

Air Permit Application

CONFIDENTIAL-TRADE SECRET-PROPRIETARY

REDACTED COPY

Solvay Specialty Polymers

Augusta, Georgia

February 2024

Information contained in this Submittal is subject to the claim or claims by Alain DeGreef declared in the attached affidavit that such information is protected under Georgia law from disclosure to the public.

Sophie Backhouse Air Quality Specialist Robert vandenMeiracker Project Manager

TRC Environmental Corporation | Solvay Specialty Polymers Air Permit Application

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\522403\0000\R5224030000-001 PERMIT APPLICATION-REDACTED COPY.DOCX

50 INTERNATIONAL DRIVE, SUITE 150, GREENVILLE, SC 29615, • 864.281.0030 PHONE • 864.281.0288 FAX • WWW.TRCcompanies.com

Table of Contents

1.0 Ba	ckgrou	und		1-1
	1.1	Facility	Location and Contact Personnel	. 1-1
2.0 An	nodel	Project [Description	2-1
	2.1	Existing	g Process Description	. 2-1
	2.2	Propose	ed Process and Administrative Changes	.2-1
		2.2.1	Additions to 700 Area –	.2-1
		2.2.2	100 And 200 Areas	
		2.2.3	200, 300, 400, 500 areas	2-2
		2.2.4	600 area	2-2
		2.2.5	700 Area	2-2
		2.2.6	800 area	2-2
		2.2.7	900, 1000, and 1200 Areas	2-2
		2.2.8	Utilities	2-2
	2.3	Emissio	ns Changes	2-3
3.0 Co	mpou	nding Pr	oject Description	. 3-1
	3.1	Existing	g Process Description	3-1
	3.2	Propose	ed Process Changes	3-1
4.0 Ke	taSpir	e/NovaS	pire Project Description	.4-1
	4.1	Existing	g Process Description	.4-1
		4.1.1	Reaction Area	4-1
		4.1.2	Solidification and Grinding	4-2
		4.1.3	Extraction, Washing, and Slurry Filtration	4-2
		4.1.4	Drying and Packaging	4-2
		4.1.5	Solvent Recovery and Waste Treatment	4-2
		4.1.6	Post Processing	4-2
	4.2	Propose	ed Process Changes	4-3
		4.2.1	Reaction Area	4-3
		<mark>4.2.2</mark>		4-3
		4.2.3		4-3
		4.2.4	Drying and Packaging	4-3
		4.2.5	Solvent Recovery and Waste Treatment	4-3

		4.2.6	Post Processing	. 4-4
	4.3	Emissio	ns Changes	. 4-4
5.0 Sul	lfone	Project D	Description	. 5-1
	5.1	Existing	Process Description	. 5-1
	5.2	Propose	ed Process Changes	. 5-2
		5.2.1	Area Equipment Modifications	. 5-2
	5.3	Emissio	ns Changes	. 5-6
6.0 Vei	rian /	Xydar Pr	oject Description	. 6-1
	6.1	Existing	Process Description	. 6-1
	6.2	Emissio	ns Changes	. 6-2
7.0 PU	SH Pr	oject Des	scription	. 7-1
	7.1	Reactio	n Area	7-1
	7.2		tion	
8.0 Prc	oject S	Sarsapari	lla	. 8-1
:	8.1	Vinylide	ene Difluoride (VDF) Production Area	. 8-1
	8.2	Polyme	rization and Area	. 8-1
	8.3	Utilities		. 8-2
	8.4	Emerge	ncy Scrubbing Operations	. 8-2
1	8.5	Alterna	te Operating Scenario	. 8-2
9.0 Re	gulato	ory Analy	sis for Modified Processes	.9-1
1	9.1	Environ	mental Protection Division, Rule 1 – Air Quality Control Emission Limits and	
		Standar	ds	.9-1
		9.1.1	Visible Emissions (391-3-102 (2)(b)), Rule b	.9-1
		9.1.2	Incinerators (391-3-102 (2)(c)), Rule c	.9-2
		9.1.3	Fuel-burning Equipment (391-3-102 (2)(d)), Rule d	.9-2
		9.1.4	Particulate Emissions from Manufacturing Processes (391-3-102 (2)(e)), Rule e	.9-2
		9.1.5	Sulfur Dioxide Limits From Fuel-burning Sources (391-3-102(2)(g)), Rule g	.9-2
		9.1.6	Sulfuric Acid Plants (391-3-102(2)(g)), Rule j	.9-2
		9.1.7	Fugitive Dust (391-3-102(2)(n)), Rule n	.9-3
		9.1.8	Nitrogen Oxides Emissions From Fuel-burning Equipment (391-3-102(2)(III)),	
			Rule III	
		9.1.9	Prevention of Significant Deterioration (391-3-102(7))	
9	9.2		New Source Performance Standards	
		9.2.1	USEPA Regulation 40 CFR 60 Subpart Db	.9-4

		9.2.2	USEPA Regulation 40 CFR 60 Subpart Dc	9-4
		9.2.3	USEPA Regulation 40 CFR 60 Subpart Kb	9-5
		9.2.4	USEPA Regulation 40 CFR 60 Subpart Kc	9-6
		9.2.5	Standards of Performance for Synthetic Organic Chemicals Manufacturing	
			Industry; Subparts VV, III, and RRR	9-6
		9.2.6	Standards of Performance for Synthetic Organic Chemicals Manufacturing	
			Industry; Subpart NNN	9-6
		9.2.7	Standards of Performance for Volatile Organic Compound Emissions from the	
			Polymer Manufacturing Industry; Subpart DDD	9-6
		9.2.8	Standards of Performance for Synthetic Fiber Production Facilities; Subpart	
			ННН	9-7
		9.2.9	Standards of Performance for Synthetic Organic Chemical Manufacturing	
			Industry Wastewater Treatment Plants; Subpart YYY (Proposed Rule)	9-7
	9.3	Part 61	National Emission Standards for Hazardous Air Pollutants	9-7
		9.3.1	National Emission Standards for Hazardous Air Pollutant for Benzene	
			Operations; Subparts J, Y, V, BB, and FF	9-7
	9.4	Part 63	National Emission Standards for Hazardous Air Pollutants for Source Categories	
		9.4.1	National Emission Standards for Organic Hazardous Air Pollutants from the	
			Synthetic Organic Chemical Manufacturing Industry; Subparts F, G, H, and I	9-8
		9.4.2	National Emission Standards for Hazardous Air Pollutant Emissions: Group I	
			Polymers and Resins; Subpart U	9-8
		9.4.3	National Emission Standards for Pharmaceuticals Production and National	
			Emission Standards for Hazardous Air Pollutants for Pesticide Active Ingredient	
			Production; Subparts GGG and MMM	9-8
		9.4.4	National Emission Standards for Hazardous Air Pollutant Emissions: Group IV	
			Polymers and Resins, Subpart JJJ	9-8
		9.4.5	National Emission Standards for Hazardous Air Pollutants: Organic Liquids	
			Distribution (Non-Gasoline); Subpart EEEE	9-8
		9.4.6	National Emission Standards for Hazardous Air Pollutants: Industrial and	
			Commercial Boilers; Subpart DDDDD	9-9
		9.4.7	National Emission Standards for Hazardous Air Pollutants: Miscellaneous	
			Organic Chemical Manufacturing; Subpart FFFF	9-9
	9.5	Part 64	Compliance Assurance Monitoring)-24
	9.6	Ambier	it Impact Analysis for Air Toxics9)-24
10.0 R	legulat	tory Ana	lysis for Project Sarsaparilla1	.0-1
	10.1	Environ	mental Protection Division, Rule 1 – Air Quality Control Emission Limits and	
		Standa	rds1	.0-1

	10.1.1	Visible Emissions (391-3-102 (2)(b)), Rule b	10-1
	10.1.2	Fuel-burning Equipment (391-3-102 (2)(d)), Rule d	10-1
	10.1.3	Particulate Emissions from Manufacturing Processes (391-3-102 (2)(e)),	
		Rule e	10-2
	10.1.4	Sulfur Dioxide Limits From Fuel-burning Sources (391-3-102(2)(g)), Rule g	10-2
	10.1.5	Fugitive Dust (391-3-102(2)(n)), Rule n	10-2
	10.1.6	Nitrogen Oxides Emissions From Fuel-burning Equipment (391-3-102(2)(III)),	
		Rule III	10-2
	10.1.7	Prevention of Significant Deterioration (391-3-102(7))	10-2
10.2	Part 60	New Source Performance Standards	10-3
	10.2.1	USEPA Regulation 40 CFR 60 Subpart Db	10-3
	10.2.2	USEPA Regulation 40 CFR 60 Subpart Dc	10-3
	10.2.3	USEPA Regulation 40 CFR 60 Subpart Kb	10-4
	10.2.4	Standards of Performance for Synthetic Organic Chemicals Manufacturing	
		Industry; Subparts VV, III, NNN, and RRR	10-5
	10.2.5	Standards of Performance for Volatile Organic Compound Emissions from the	
		Polymer Manufacturing Industry; Subpart DDD	10-5
	10.2.6	Standards of Performance for Standards of Performance for Volatile Organic	
		Compound (VOC) Emissions From the Synthetic Organic Chemical	
		Manufacturing Industry (SOCMI) Air Oxidation Unit Processes; Subpart III	10-6
	10.2.7	Standards of Performance for Synthetic Fiber Production Facilities;	
		Subpart HHH	10-6
	10.2.8	Standards of Performance for Synthetic Organic Chemical Manufacturing	
		Industry Wastewater Treatment Plants; Subpart YYY (Proposed Rule)	10-6
10.3	Part 61	National Emission Standards for Hazardous Air Pollutants	10-6
	10.3.1	National Emission Standards for Hazardous Air Pollutant for Benzene	
		Operations; Subparts J, Y, V, BB, and FF	10-6
10.4	Part 63	National Emission Standards for Hazardous Air Pollutants for Source Categories	
	10.4.1	National Emission Standards for Organic Hazardous Air Pollutants from the	
		Synthetic Organic Chemical Manufacturing Industry; Subparts F, G, H and I	10-7
	10.4.2	National Emission Standards for Hazardous Air Pollutant Emissions: Group I	
		Polymers and Resins; Subpart U	10-7
	10.4.3	National Emission Standards for Pharmaceuticals Production and National	
		Emission Standards for Hazardous Air Pollutants for Pesticide Active Ingredient	
		Production; Subparts GGG and MMM	10-7
	10.4.4	National Emission Standards for Hazardous Air Pollutant Emissions: Group IV	
		Polymers and Resins, Subpart JJJ	10-7

	10.4.5	National Emission Standards for Hazardous Air Pollutants: Organic Liquids	
		Distribution (Non-Gasoline); Subpart EEEE	10-7
	10.4.6	National Emission Standards for Hazardous Air Pollutants: Miscellaneous	
		Organic Chemical Manufacturing; Subpart FFFF	10-8
	10.4.7	National Emission Standards for Hazardous Air Pollutants: Industrial and	
		Commercial Boilers; Subpart DDDDD	. 10-13
	10.4.8	National Emission Standards for Hazardous Air Pollutants: Hydrochloric Acid	
		Production - Subpart NNNNN	. 10-13
10.5	Part 64	Compliance Assurance Monitoring	. 10-14
10.6	Ambier	nt Impact Analysis for Air Toxics	. 10-15
11.0 Air Dis	persion N	Nodeling Analysis	11-1
11.1	Ambier	nt Air Impact Analysis Methodology	11-3
	11.1.1	Dispersion Model Selection and Application	11-3
	11.1.2	Modeling Procedures	11-3
11.2	Modele	ed Emission Sources and Emission Rates	11-5
11.3	Modeli	ng Results	11-9

List of Tables

Table 9-1	Summary of Maximum Anticipate Actual Emissions for the Augusta Facility	9-4
Table 9-2	Continuous Process Vent Determination	9-13
Table 9-3	Summary of Hydrogen Halide and Halogen HAP Emission Sources	9-14
Table 9-4	Sulfone Process Liquid Streams	9-21
Table 10-1	Summary of Maximum Anticipate Actual Emissions for the Augusta Facility	10-3
Table 10-2	Tank Capacities	10-5
Table 11-1	Vertical Exhaust Stacks	11-6
Table 11-2	Horizontal Exhaust Stacks	11-7
Table 11-3	Emission Rates in Grams per Second	11-8
Table 11-4	Air Quality Modeling Results (ug/m ³)	11-9

List of Figures

Figure 1:	Site Location	<u>)</u>
Figure 2.	Receptor Layout	5

List of Appendices

Appendix A	Claim to Confidentiality
Appendix B	Amodel Process Flow Diagram
Appendix C	Amodel Emission Calculations
Appendix D	Compounding Process Flow Diagrams
Appendix E	Compounding Emission Calculations
Appendix F	KetaSpire / NovaSpire Process Flow Diagram
Appendix G	KetaSpire / NovaSpire Emission Calculations
Appendix H	Sulfone Process Flow Diagram
Appendix I	Sulfone Emissions Calculations
Appendix J	Verian Process Flow Diagram
Appendix K	Verian Emission Calculations
Appendix L	PUSH Process Flow Diagram
Appendix M	PUSH Emission Calculations
Appendix N	Project Sarsaparilla Process Flow Diagrams
Appendix O	Project Sarsaparilla Emission Calculations
Appendix P	Pertinent Applicability Determinations for New Source Performance Standards

1.0 Background

Solvay Specialty Polymers USA, LLC (Solvay) operates several manufacturing units at the facility in Augusta, Georgia. This plant is used to produce several high-performance polymers. Solvay proposes to make modifications to the Amodel, Compounding, KetaSpire/NovaSpire (aka PEEK), Sulfone, and Verian areas which are individually permitted processes and add a new process identified as the "Sarsaparilla" project. This application addresses these changes as well as the new process and requests timely review of this application. Solvay intends to begin construction of the first project in the third quarter of 2024; other projects will be initiated thereafter. All projects are expected to be complete by 2030. Sections 2 through 8 describe the proposed changes and additions as well as emissions from each area. Sections 9 and 10 provide a detailed regulatory applicability analyses and summarizes the requirements for each applicable regulation. Section 11 contains air dispersion modeling analysis information for toxic air pollutants (TAPs). Appendices A through O contain process flow diagrams and detailed air emission calculations for each of the process areas.

Information in this report and its appendices are considered confidential and Solvay is submitting a claim of confidentiality pursuant to Georgia regulations. Pages containing confidential information are labeled as such. A public version of this document with confidential information redacted is being submitted concurrent with this document. Appendix A contains the claim to confidentiality information.

Solvay has prepared and submitted concurrent with this document air permit application information using the Georgia EPD Online System (GEOS) for Permitting, Compliance and Facility Information. This narrative serves to provide complete and relevant information to support the electronic GEOS application.

Prior to, during, and after completion of the projects described in this application, the facility will be considered a synthetic minor source for Prevention of Significant Deterioration (PSD). The facility is and will remain a Title V major source due to emissions of hazardous air pollutants (HAPs).

1.1 Facility Location and Contact Personnel

The Solvay facility is located in Augusta, Georgia. The facility location, mailing address, and facility contact are as follows:

Site Location and Mailing Address

Solvay Specialty Polymers USA, LLC 3702 Clanton Road Augusta, Georgia 30906

Facility Contact

Michael Ray HSE Manager Augusta & Greenville Sites

Mobile Telephone:706.829.1567Office Telephone:706.771.3356Email:Michael.Ray@syensqo.com

Solvay plans to modify the Amodel process unit by adding solid stating process equipment to increase production.

¹ due to operational uptime constraints such as routine maintenance. The proposed process and equipment changes will increase production capacity gradually, in a stepwise fashion, ². Some of this increase in production is attributed to addition of solid stating equipment, whereas other increases are attributed to previous and future debottlenecking efforts. Solid stating increases overall unit throughput and therefore requires shorter cycle times in existing equipment, allowing for quicker overall processing. As part of this application, Solvay is also incorporating administrative changes to the process related to previous off-permit changes that have already been approved, but not necessarily incorporated into the permit.

2.1 Existing Process Description

Amodel is a strong, tough, high temperature polymer known as a polyphthalamide and is used in automotive, electronic, and other consumer applications. Amodel represents an entirely new class of plastics, produced for the first time commercially at the Augusta site. In the production of Amodel, the raw materials are first mixed together in the feed preparation area and later concentrated and heated before entering the reaction vessel. After reaction, the Amodel product is sent through an extruder where the molten material is made into small pellets. The pellets are then screened to remove large and small particles before packaging.

2.2 Proposed Process and Administrative Changes

associated with this process, A-70, A-71, A-72, and A-73.

2.2.2 100 And 200 Areas

No equipment will be added to this area as part of this project, but previously Solvay added an adipic acid (AA) sack unloading system (KM-120) controlled by a new filter (KH-120) as well as adding the capability to unload 'Mongo' trailers directly to the AA storage silo. Solvay

previously removed the catalyst hopper (KF-227, also referred to as KP-227) and weighing and their associated filters.

2.2.3 200, 300, 400, 500 areas

No changes are proposed for these areas. These areas contain an antifoam tank, deionized water (DIW) flush tank, and concentrator knockout pot that were added after 2001 and do not have emissions of regulated pollutants due to the nature of their operations. Solvay identified an existing catalyst addition hopper (KF-306) that was inadvertently omitted from the permit. Solvay added these to the Appendix B diagrams for completeness. Two tanks have names that did not accurately represent the operations and have been updated in the flow diagrams, KD-350 and KD-310.

2.2.4 600 area

No changes are proposed for this area. As part of an off-permit change, Solvay added an HMDA Recovery Tank to the 600 area. Equipment added since original permitting includes a parts cleaning oven and fume collection system as well as the following:

Underwater pelletizer

Centrifugal dryer and associated fan

These sources vent through existing equipment such as the vacuum pumps or have emissions that are included in Appendix C.

2.2.5 700 Area

No changes are proposed for this area and no updates to the permit are necessary.

2.2.6 800 area

As part of an off-permit change, Solvay added an HMDA Recovery system to the 800 area. HMDA recovery equipment includes a feed tank, seal pot, recovery column, condenser, reflux drum, and recovered water tank. Solvay requests changes to the equipment descriptions as depicted in the flow diagram to better reflect the actual operations associated with the individual equipment.

2.2.7 900, 1000, and 1200 Areas

No changes are proposed for this area and no updates to the permit are necessary.

2.2.8 Utilities

An oil heater (KB-901) and a boiler (UB-1210) are associated with the Amodel area. No new
fossil fuel fired oil heaters are proposed as part of this project, but Solvay may replace existing
*TRC Environmental Corporation | Solvay Specialty Polymers*Air Permit Application REDACTED COPY2-2

natural gas fueled oil heaters with electric heaters. The electric heaters operate without emissions; thus these would be exempt from permitting. Solvay plans to add a new boiler to ultimately replace UB-1210 and provide steam for the Amodel process as well as other plant processes. The new boiler will have a heat input capacity of 99.5 x 10⁶ British thermal units per hour (Btu/hr) and will be similar to the boiler installed as part of the original KetaSpire/NovaSpire project. The boiler will primarily operate on natural gas with fuel oil as a backup for periods of natural gas curtailment. The boiler will be equipped with highly efficient low NOX and low CO burners. Solvay plans to keep UB-1210 in place for a period time up to and after installation of the new boiler to serve as a spare boiler until such time as Solvay is confident that the new boiler is operating properly and UB-1210 is no longer needed. Solvay does not expect to operate UB-1210 concurrent with the new boiler.

2.3 Emissions Changes

Previous estimates compiled in 2001 were the basis for the original air emission calculations. Where equipment capacity needed to be increased to achieve the desired production capacity, calculations have been updated. Likewise, if equipment has been removed or added since 2001, calculations have been updated. The emission updates also include the contributions from the solid stating process. All prior assumptions for emissions are valid, but emissions have been updated to reflect better understanding of the process which result in a net reduction of emissions relative to previous estimates. An overall emission summary by source and for the process as well as detailed emission calculations are contained in Appendix C

3.0 Compounding Project Description

Solvay plans to modify the compounding process unit by adding equipment to increase production and utilize new chemicals. Two new extruding lines will be added and are referred to as the D6 and D7 lines.

3.1 Existing Process Description

The production of compounds is accomplished by the melting of polymers and additives in extruders. Reinforcement additives are introduced into the melted polymer and formed into pellets. Pellets are cooled, size screened, and stored prior to packing and shipping. The Solvay compounding facility has been designed to compound polymer products. Following is a brief description of the existing process which has four extruders and associated equipment.

For Amodel, neat pellets are fed to the compounding plant via a closed loop pneumatic lift. The lift is equipped with an in-line diverter which can deliver the neat pellets to either the packaging bin or the pellet feed bin. During compounding, the neat pellets are sent to the pellet feed bin (CF-110 or respective silo). Depending on desired final product mix, various additives, fillers, resins, and stabilizers are added to appropriate blenders by means of supersacks, boxes, bags, and drums. The various feed stations are exhausted via a baghouse (CH—860 or respective baghouse). The neat pellets, additives, filler, resins, and stabilizers are introduced to the extruder (CH-410 or respective extruder) through their respective feeder. The extruder off- gas is collected and transferred by liquid ring vacuum pumps to the existing caustic scrubber (T--701). The extruded product is transferred through a water bath/belt conveyor to the pelletizer. The pellets are screened and cooled in the pellet cooler/screener (CM-530 of respective classifier). The cooled product is transferred to one of eight product test bins. If specifications are met, the product is packaged in the specific packaging type for shipment to a warehouse or the customer.

3.2 Proposed Process Changes

Solvay plans to add two extruders and associated raw material receiving and conveying equipment as well as product processing equipment.

The D6 line consists of three polymer hoppers and two additive hoppers. Each of the conveying steps is controlled by a filter system. The initial conveying step is a vacuum system controlled by a central dedusting system. The subsequent steps are gravity conveying and emissions are controlled by inherent filters similar to a baghouse sock to capture particulate in the displaced air from conveying. The raw materials are fed into a hopper attached to the extruder. The extruder is equipped with a collection system and liquid ring vacuum pump. After extrusion, the polymer is cooled to solidify the polymer and then pelletized. A system will be added to convey, screen, and package the pellets. The pellets are not dusty at this point but the system is equipped with a filter system to capture particulate. A detailed process flow diagram is contained in Appendix D.

The second extruder to be added is the D7 system. This system is more complicated than the D6 system because it has the capability to utilize a broader spectrum of raw materials. The categories of components are polymer powder or pellets and additive powders. Depending on the type and amount of material used, gravity drop and/or vacuum conveying systems are used. In both cases, the emissions are controlled by inherent process filters or control device filters. Appendix D contains a detailed process flow diagram for the D7 process indicating each conveying step. As with D6, the extruder is equipped with a liquid ring vacuum pump and the polymer is cooled and solidified to form pellets. D7 will have two packaging and screening systems routed to a filter.

⁵ Appendix E contains emission

calculations for the new compounding processes.

4.0 KetaSpire/NovaSpire Project Description

"The data being shipped herewith may be controlled for export by the United States Government. You shall be aware and adhere to the applicable export regulations and laws. Export or re-export of this data to any other foreign person or destination, including re-importing this data into the United States, may require a license issued by applicable regulatory agencies and/or local export control authorities. You shall not export or re-export any data to any proscribed country listed in the U.S. Export Administration Regulations unless properly authorized by the U.S. Government."

Solvay plans to modify the KetaSpire/NovaSpire process unit by adding new equipment and modifying existing equipment to increase production.

⁶ Solvay will add a new oil heater, a reactor and associated scrubber, raw material bins, a new solvent extractor, dryer, and powder system. Solvay plans to install equipment over the course of several years to make incremental increases in production. The project is divided into two phases for planning purposes.

4.1 Existing Process Description

Solvay installed and began operation of a new unit for manufacturing a new product that is classified as an ultra-performance polymer in 2017. The process is described in the permit as the KetaSpire / NovaSpire process referred hereafter as KetaSpire (and was formerly known as the Jupiter project). The KetaSpire process involves a batch reaction,

⁸ drying, and solvent recovery.

4.1.1 Reaction Area

A reaction solvent is melted and charged as a liquid to the reaction batch. The dry powder reactants including ⁹ and salts are then charged to the reactor. All the powder materials are handled in enclosed systems that vent through baghouses to the atmosphere.

A polymerization reaction is carried out at high temperature and atmospheric pressure. The vent from the reactor is vented to a scrubber that captures low concentration hydrogen fluoride (HF) emissions. Once the reaction is complete, it is terminated

4.1.2 Solidification and Grinding

The reactor is discharged onto a belt cooler, solidified and then ground into a powder. The powder which consists of solvent, salts and polymer is pneumatically conveyed to ground powder storage bins.

4.1.3 Extraction, Washing, and Slurry Filtration

The powder is then fed to the extraction vessels where an exempt wash solvent (*i.e.*, non-volatile organic compound [VOC] and non-hazardous air pollutant [non-HAP]) and water washing are used to remove the salts and the reaction solvent. The extraction vessels are fed from a tank farm that holds several extraction solvent and water tanks. All the tanks containing high concentration extraction solvent are in equilibrium with the gas phase and vent through a common condenser before being released to atmosphere.

An acidified water wash is used to assist in removal of residual salts. The acid is fed from a hydrochloric acid (HCl) storage tank located in the tank farm that vents to a scrubber.

After extraction and water washing is complete, the polymer is separated from the wash water in an agitated filter and the wet cake is sent to a wet cake bin.

4.1.4 Drying and Packaging

¹¹ The final polymer is in a granular or powder form and is collected into storage bins before being packaged.

4.1.5 Solvent Recovery and Waste Treatment

The extraction solvent and wash water used for extraction and washing are treated through a set of columns that reclaims the extraction solvent and the reaction solvent.

The water, freed of wash solvent and reaction solvent, is sent to the waste treatment section
12

A deionized water unit, cooling water unit, a refrigeration unit, a hot oil heater, and a boiler are also included in the process.

4.1.6 Post Processing

Further processing of the final polymer includes grinding the polymer into larger particle size powders using a fluidized grinder. The ground polymer is conveyed to a bag house before being sieved and packaged.

Solvay plans to install a new duplicate grinding line as described above.

4.2 Proposed Process Changes

A detailed process flow diagram containing new and existing equipment for this process is contained in Appendix F. The following subsections describe the new equipment in detail organized by process area.

4.2.1 Reaction Area

Solvay plans to add a second reactor and scrubber system. The raw material systems will also be modified.

<mark>4.2.2</mark>

Solvay does not plan to make modifications to existing equipment in this area. The existing are capable of handling the additional reactor because the reaction process is batch and the ¹⁴ is only used for a portion of each day.

4.2.3

Solvay plans to replace the following tanks as part of this project with larger tanks: PD-401, PD-402, PD-403, PD-404, PF-502, PF-503, PF-504, & PF-506 (note these tanks process exempt wash solvent *i.e.,* non-volatile organic compound [VOC] and non-hazardous air pollutant [non-HAP]). A new ¹⁵ equipped with a condenser will be added to this area. The equipment serves the same purpose as analogous equipment installed as part of the original application.

4.2.4 Drying and Packaging

Solvay plans to upgrade the existing dryer system in this area. A new dryer that serves the same purpose as the existing dryer will be installed. The wet cake is then dried in a fluidized bed dryer. The final polymer is in a granular or powder form and is collected into storage bins before being packaged.

4.2.5 Solvent Recovery and Waste Treatment

In addition to the existing emission control equipment in this area, a new vent and condenser will be added to control emission from the ¹⁶ and other solvent changes. Modifications to an existing distillation column and the installation of a new distillation column for recovery of exempt was solvent will be added.

A new oil heater with a capacity of 9.5×10^6 Btu/hr will be added. The heater will primarily use natural gas as fuel, but it will be equipped to burn oil as a backup during curtailment periods and for periodic testing purposes up to 48 hours per year. For purposes of estimating reasonable potential emissions, fuel oil use was limited to one month per year (720 hours). The oil heater will be equipped with a low NOX burner.

4.2.6 Post Processing

Solvay plans to install a new duplicate grinding line as described in section 4.1.6

4.3 Emissions Changes

The original permit application submitted to GA EPD in 2014 contained detailed calculations for this process. These calculations have been updated to include the new equipment and associated emissions. Appendix G contains a summary of potential emissions from the process before and after the changes and also provides the detailed emission calculations by emission source.

¹⁷ No equipment modifications or

Solvay plans to increase the annual Sulfone monomer production from currently permitted level

additions are required for the waste heat boiler. New and modified equipment in a limited number of areas is needed to accomplish this production increase. A current process description as well as a discussion of each addition or modification by process area is contained in the following subsections.

5.1 Existing Process Description

The Sulfone monomer that the facility produces is a white granular product used primarily by Solvay Specialty Polymers to produce Udel, Radel A, and Radel R at other manufacturing locations. These polymers are used to manufacture materials and parts for medical, aircraft, automotive, and electronics industries. Sulfone monomer is also used in the manufacturing of pharmaceuticals and specialty chemicals.

molten material or as a granular product. The final product is stored in bins and is transported in bulk trucks and in 1000-kilogram supersacks.

¹⁹ After reacting, the monomer is further processed and

¹⁸ The Sulfone product can be produced as a

purified until the final granulated product is generated. The pure Sulfone monomer is shipped off site in either hopper trucks or super sacks.

AREA	DESCRIPTION	PERMIT APPLICATION SOURCE CODE(S)
100 Area – Raw Material Storage	Storage	01, 02, 03, 11
200 Area – Sulfonation	Reaction	04
300 Area – Sulfonylation	Reaction	05
400 Area – Extraction	Extraction	06
500 Area – Primary Crystallization	Product Purification	07
600 Area – Scavenger Crystallization	Product Purification	07
700 Area – Tar System	Product Purification	07
800 Area – Product Distillation	Product Purification	07
900 Area – Product Storage	Storage	09
1600 Area – Wastewater Pretreatment	Waste Treatment	10
1700 Area – Product Granulation	Final Processing	13

The Sulfone Monomer Process Unit is comprised of the following areas:

TRC Environmental Corporation | Solvay Specialty Polymers Air Permit Application **REDACTED COPY**

5-1

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\522403\0000\R5224030000-001 PERMIT APPLICATION-REDACTED COPY.DOCX

5.2 Proposed Process Changes

The proposed expansion project will allow Solvay to increase the annual monomer production

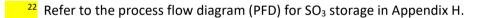
²⁰ No

equipment modifications or additions are required for the waste heat boiler. The following are the activities which will added with this project:

- Second Reactor II Sulfonylation
- Extraction line

-

- Concentration and purification line
- MIS cracking unit
- Three Melt crystallizers and three pastillation processes to the product purification process
- Voluntary Carbon adsorption for MCB


The details of specific equipment are provided in the process flow diagram in Appendix H.

5.2.1 Area Equipment Modifications

The following subsections describe each process area and a process description of any modifications or additions occurring within each process area:

100 Area – Raw Material Storage

Existing: SO₃ is received in bulk shipments and stored on site.

MCB is also received in bulk tank trucks, isocontainers, or railcars (shown in the PFD in Appendix H). Storage tank vapor is vented through a condenser, LE-114 (C2A), to remove and recycle valuable MCB product. The MCB storage tank condenser LE-114 vents through stack S2A. Two MCB supply filters remove tank scale or rust before the raw material is used in the process.

Sodium hydroxide (NaOH, caustic) is delivered as an aqueous solution by tank truck or railcar as shown in the PFD in Appendix H. The NaOH is diluted with water before use in the Waste Heat Boiler stack gas scrubber and wastewater treatment system. Solvay can also receive and use magnesium hydroxide to neutralize wastewater. The caustic storage tanks vent through S3A and S3B stacks. Emissions from these tanks are primarily water and contain no hydrocarbons. Five percent sodium carbonate solution for use during Sulfone neutralization is prepared in a 450-gallon mix/storage tank by mixing bags of dry raw material with deionized water (see PFD in Appendix H). The mixing and storage tank vents through a baghouse (C11A) and stack (S11A).

New: The Sulfone Monomer Expansion will include the addition of raw material production unit. Raw material will be manufactured in a unit

200 and 300 Areas - Reaction

New: The Sulfone Monomer Expansion will add no new emission points to the 200 and 300 Areas. Solvay will add another Sulfonylation II

²⁵ The

modification within the Sulfonylation II System will not affect emissions.

400 Area - Extraction

Existing: After the material is reacted, the product is collected in an extraction feed tank.

²⁶ An additional condenser, LE-477 (C6F), with vent stack (S6F), recovers raw material from the Sulfone product dehydration tower.

New: The Sulfone Monomer Expansion will require a new surge drum, LD-441, and a new extraction line. The LD-441 surge drum will vent to the new LE-580 condenser

(discussed in the next section). The new extraction line will consist of a set of acid and neutralization columns (identical to the existing) and a wash step (identical to the existing).

0,

500, 600, 700, and 800 Areas – Production Purification

27

Existing: Sulfone product purification involves crystallization, tar (Undesired Sulfone Isomers) removal, and product distillation.

New: A second line for ²⁹ will be installed. The line II concentrator/purification system consists of twelve unique sources as follows:

- LD-585 MCB Surge Drum
- LD-880 Surge Drum
- LD-688 Surge Drum
- LE-882 Condenser
- LT-681 Tower
- LT-881 Tower
- LE-685 Condenser
- LD-890 Dissolver Drum
- LD-788 Surge Drum
- LD-893 Drum
- LT-781 Tower
- LE-782 Condenser

The condensers and equipment described in the list above all vent to the LE-580 condenser.

900 Area – Product Storage

Existing: After product granulation, the finished Sulfone product is sent to two storage bins and a product sacking system. Particulate emissions generated within this area are controlled by baghouses C9D, C9E, and C9F.

The Sulfone Monomer Expansion will add no new emission points to the 900 Area. Changes in emissions due to increased production are shown in Appendix I.

Waste Heat Boiler

Existing: The Waste Heat Boiler (B8) (shown in PFD in Appendix H) generates steam by

The off-gas from the boiler is passed through water (C8A) and caustic (C8B) scrubbers to remove and neutralize acid gases. The scrubbed boiler off-gas then passes

30

28

through an entrainment separator (C8C) and then vented to the atmosphere through stack S8A. The scrubber blowdown neutralization tank is vented through stack S8B.

31

No changes or additions are proposed for the WHB.

1700 Area – Product Granulation

Existing: After product purification, the Sulfone product is transferred to two molten storage tanks with associated exhaust vents, S13A and S13E. The Sulfone is then processed through the Product Granulation system where it is granulated, cooled, and then sent to Product Storage (Area 900). Baghouses in this area (C13B, C13C, and C13D) are used to remove Sulfone dust from various closed loop nitrogen loops within the Granulation system.

New: The Sulfone Monomer Expansion will add

³² Baghouses in this area (C13G/C13H/C13I) will be used to remove Sulfone dust. Stacks associated with this equipment shall be S13G/S13H/S13I. Also, an additional molten storage tank will be installed with an atmospheric vent (S13F). The total number of tanks for this process will be four; two tanks were previously considered insignificant. Emissions for the four tanks are contained in the Appendix I.

Wastewater Pretreatment

Existing: Wastewater from the Sulfone Monomer Unit is pretreated on site before being discharged to the city sewer. There are vents on the organic wastewater equalization tank LF-1601 (S10A), the wastewater holding tank LF-1618 (S10B) and the process wastewater neutralization tank LD-1631 (S10C).

The Sulfone Monomer Expansion will add no new emission points to the Wastewater Area nor change the concentration.

MIS Cracking

Existing: Solvay operates an MIS unit to "crack" a byproduct stream of MIS. This process recovers MCB which is one of the component raw materials of Sulfone manufacturing. Once recovered, the MCB is recycled back into the process where it reduces the consumption of this valuable raw material. In a letter dated November 6, 2023, Solvay notified the GA EPD of a project to add a condenser to the permitted Sulfone process to optimize operational conditions; the condenser was identified as LE-368. The project did not involve adding new process equipment such as tanks or reactors, but additional piping, valves, and instrumentation were required to vent emissions to the new condenser. The project has been completed and the following equipment are now routed to condenser LE-368: 0S7D which includes LT-790; LD-792; LR-350; and LT-363.

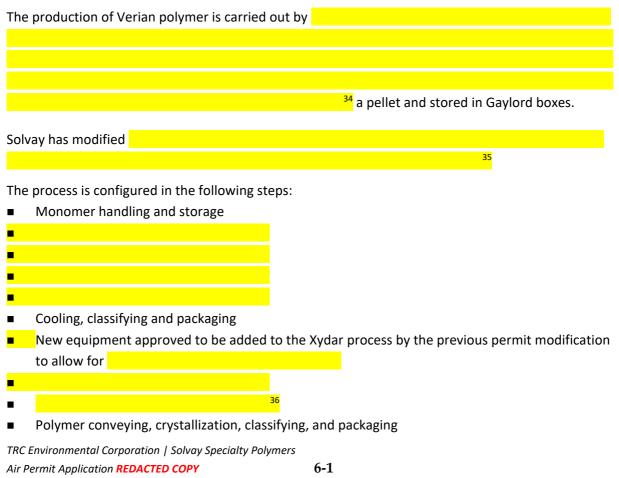
New: The Sulfone Monomer Expansion will require addition of an MIS cracking system which is identical to the existing system and includes equipment LR-320, LE331, LH-337, LD-791, LD-335, LT-333, and LE-347. Updated emissions are contained in Appendix I.

Voluntary Carbon Adsorption System

In a letter dated September 29, 2023, Solvay notified GA EPD of plans to install two voluntary carbon adsorption beds in parallel (LF-1673 and LF-1674). When one is active, the other will serve as backup. Emissions from the following existing condensers which currently vent to the atmosphere, will be routed to the carbon adsorption system: LD-430, LE-309, LE-679, LE-405, LE-680, LE-467, LE-576, LE-477, LE-330, and LE-114. Solvay will also route the new condenser, LE-368, to this system. In the event of a malfunction of the condensers or loss of cooling that results in a temperature above the allowable range, the emissions from the condensers will be routed to the backup carbon beds, as is currently the case (reference condition 6.1.7 c.iv.). This system will be installed in 2024. Solvay requests that as part of this permit revision, this system be added to the permit.

5.3 Emissions Changes

The original permit application submitted to GA EPD in 2014 contained detailed calculations for this process. These calculations have been updated to include the new equipment and associated emissions. Appendix I contains a summary of potential emissions from the process before and after the changes and also provides the detailed emission calculations by emission source. Within the process, some equipment has emissions proportional to production whereas other equipment does not have emissions that increase due to production. For the equipment that does not increase emissions the reason is that the equipment has a typical setpoint flow rate of gas, normally inert gas such as nitrogen, to sweep emissions from the vessel. An increase in production does not require an increase in flow of inert gas; thus, there is no increase in emissions when there is no increase in gas flow. Other calculations were updated to recognize stack test results submitted to GA EPD. These test results include the waste heat boiler, LE-576 and LE-580. Detailed emission calculations are contained in Appendix I.


6.0 Verian / Xydar Project Description

In March 2018, Solvay received a permit revision to modify the three existing Xydar lines to produce a new polymer, Verian. To-date, one line has been converted, but it has not reached full production capacity. The converted line has produced sellable product and a stack test was conducted to establish

³³ Solvay still plans to complete the conversion that is in progress on one line as well as modify one or both the other lines to produce Verian. As such, Solvay is requesting that the permit allow modifications to continue as described in the previous permit application. No new equipment or changes from the previous application are requested.

6.1 Existing Process Description

Xydar is a high temperature liquid crystal polymer. Because of its good flow properties, Xydar is frequently used to make very small, intricate parts for the computer and electronics industries. The production of Xydar polymer is carried out by the reaction of liquid and solid monomers in a batch reactor. The material from the batch reactors is transferred to a mixing system that allows the polymer to form as a solid. The polymer is then transferred to the final product handling system as a powder and stored in 500-kilogram Gaylord boxes.

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\522403\0000\R5224030000-001 PERMIT APPLICATION-REDACTED COPY.DOCX

Other activities which are related to the main process flow include off-gas discharge and treatment as well as wastewater treatment. A block flow diagram is contained in Appendix J. Solvay intends to continue to make incremental changes in equipment, operational changes, and production rates in several phases over a period of up to approximately five more years. Solvay has determined that the polymer may require further processing to meet customer demands. This processing would involve

³⁷ Solvay will pursue authorization for approval of this equipment as a second phase once the design has been developed. Solvay anticipates that the polymer processing equipment construction would commence in 2-5 years.

6.2 Emissions Changes

Potential criteria pollutant emissions, for purposes of this application, are assumed to be the potential emissions, with consideration of controls at the maximum production rates No restriction on production capacity beyond the equipment capabilities is requested. The emissions associated with the process are shown Appendix K.

7.0 PUSH Project Description

"The data being shipped herewith may be controlled for export by the United States Government. You shall be aware and adhere to the applicable export regulations and laws. Export or re-export of this data to any other foreign person or destination, including re-importing this data into the United States, may require a license issued by applicable regulatory agencies and/or local export control authorities. You shall not export or re-export any data to any proscribed country listed in the U.S. Export Administration Regulations unless properly authorized by the U.S. Government."

Solvay received a permit to construct a new process to produce a new ultra-high-performance polymer named Project PUSH. Solvay has not completed construction on this process but still intends to install and operate this new unit at the Augusta, Georgia facility. Solvay proposes to add several raw materials and a ³⁸ to the current authorization, but otherwise the process remains the same as permitted previously. The added raw materials are non-HAP and non-TAP chemicals. The added ³⁹ The process will be constructed on the east side of the Augusta plant site. The PUSH process involves a batch reaction and purification steps. A process flow diagram for the process is contained in Appendix L and emission calculations are contained in Appendix M.

7.1 Reaction Area

PUSH Polymer is produced through the polymerization of non-HAP monomer raw materials in a solvent. Both monomers are unloaded and prepared for the polymerization in the 1200 area of the unit. Monomer 1 is transferred from incoming drums/totes to a storage tank for use.

 TRC Environmental Corporation / Solvay Specialty Polymers

 Air Permit Application REDACTED COPY
 7-1

 \\employees.root.local\env\ecc\Greenville\wpgv\\pitz\s22403\0000\rs224030000-001 PERMIT APPLICATION-REDACTED COPY. DOCX

The polymerization takes place in solvent in the presence of multiple additives and catalysts. Solid ingredients used in this part of the process are prepared and handled in areas using dust collectors/baghouses to control PM per the block flow diagram shown in Appendix L.

7.2 Purification

The polymer is further processed following the polymerization steps to remove impurities. This is completed by first reacting the impurities to increase solubility and then removing the impurities through ______. The reaction steps take place in the 200 area. Solvay proposes to

43

44

The purified polymer is thermally dried to produce a dry finished product.

Both the used reaction solvents and extraction solvents are collected and processed through a solvent recovery unit for reuse in the process. The

42

45

8.0 Project Sarsaparilla

⁴⁶ The

Solvay proposes to construct an entirely new process to produce an isolated intermediate that can be shipped as a product, VDF, and a polymer product, PVDF. The process equipment to produce the intermediate and the polymer product are referred to as Project Sarsaparilla. These two chemicals are produced by other Solvay facilities outside of the USA. The new process is being constructed to supply polymer to the rapidly growing advanced battery production industry. The Sarsaparilla process starts with a primary raw material, 1-Chloro-1,1-difluoroethane (aka HCFC-142b or 142b) which is a haloalkane with the chemical formula CH₃CClF₂. The Solvay process will pyrolyze 142b to produce vinylidene difluoride (VDF) which is an intermediate that can be shipped as a product or polymerized onsite to form polyvinylidene fluoride (PVDF). As part of this project, Solvay will also install a 99.5 million Btu/hr boiler fired with natural gas; the boiler will be tied to the site's steam system, thus it may supply steam to processes other than the Sarsaparilla unit.

8.1 Vinylidene Difluoride (VDF) Production Area

HCFC-142b will be received in rail cars and unloaded into pressurized storage vessels. The storage vessels will feed

The pyrolysis creates process gas

process gas from the furnaces is then routed to the quench section to separate and

⁴⁷ The purified process gas rich in VDF is then dried and compressed. The VDF enters a rectification area to further purify the VDF. The final stage is a cooling stage to convert the VDF to a liquid for storage. VDF can be shipped offsite as a liquid or routed to the polymerization section. Emissions from the VDF process are routed to one of two thermal oxidizers followed by caustic scrubbers for treatment of organics and capture of halogens. The halogens captured by the scrubbers are discharged to wastewater treatment. A process flow diagram is contained in Appendix N. Emission calculations are contained in Appendix O.

8.2 Polymerization and 48 Area

Liquid VDF is stored within the process and is fed to a batch reactor with additives to polymerize the VDF into PVDF. The resulting polymer is a solid that is contained in a water slurry. The slurry is ⁴⁹ to remove impurities and then dried using ⁵⁰ Dried polymer is then packaged for shipping to customers as a powder. Sources of particulate are controlled by baghouses. VDF as well as comonomers and other additives are introduced into the reactor where they combine to produce PVDF polymer. The reactors do not have a vent; the reactors convert raw material to polymer.

8.3 Utilities

The process includes a 99.5 x 10^6 Btu/hr boiler that uses natural gas to produce steam. Fuel oil may be used during periods of curtailment and for routine testing and maintenance. The boiler will be a water-tube boiler equipped with a highly efficient, low NOX burner to minimize NO_x and CO production. Solvay will also install a wastewater pH neutralization process. The wastewater from the process contains halogens; prior to discharge to the city of Augusta, the wastewater pH must be in the range of 6-10 standard units. Solvay will use a basic material to neutralize. Dry powder lime will be received from rail cars or trucks and pneumatically conveyed to a silo equipped with a filtration system to capture the lime. The filter is inherent to the process because the conveying system would not function without the filter. After conveying to the silo, the base is mixed with water in a 'hydrator' to dissolve it in water.

8.4 Emergency Scrubbing Operations

Because the process involves flammable and gaseous materials, an emergency scrubber system will be installed to capture halogens in the event that the thermal oxidizer and scrubber system cannot be used for emission control, i.e., during a malfunction or unplanned shutdown.

8.5 Alternate Operating Scenario

Due to process issues, there may be times when emissions from HT-305 may not be able to be vented to the thermal oxidizer system. The vent from HT-305 does not contain any HAP (organic, halogen, or halogenated).

⁵¹ Solvay will track hours operating in this mode and prepare emission estimates to include in monthly emission calculations.

9.0 Regulatory Analysis for Modified Processes

Facility operations are currently subject to air quality regulations that establish emissions limits and require an air permit. The Amodel, Compounding, KetaSpire/Novaspire, Sulfone, Verian/Xydar, and PUSH process areas are currently listed in the Title V permit. The following sections provide a summary of potentially applicable regulations. Where the proposed modifications or equipment additions affect a process(es) the new or modified requirements are discussed. If no changes are required, the section states that.

Chapter 391-3-1 of the Georgia Environmental Protection Division (GA EPD) regulations provides emissions limits and permitting requirements in Sections .02 and .03, respectively. The potentially applicable requirements of Section .02 are described in subsequent sections of this report. Section .03 provides the permitting procedures for State Implementation Plan (SIP) permits and Title V permits.

Section .03(1)(a) requires that facilities obtain permits prior to beginning construction. This report serves as the permit application to gain authorization from GA EPD to add the equipment necessary for the proposed expansion. GA EPD uses electronic permitting for new and modified equipment. The changes to the processes are contained in the GEOS system.

9.1 Environmental Protection Division, Rule 1 – Air Quality Control Emission Limits and Standards

9.1.1 Visible Emissions (391-3-1-.02 (2)(b)), Rule b

This rule regulates emissions from emission sources to no greater than 40 percent opacity except as provided by more restrictive or specific rules. The emissions from equipment within the existing processes are subject to this requirement:

- Amodel: Flare KB-807, Extruder KM-601, and Mix Tank KD-260
- Sulfone: Tank LD-101 and Reactor LR-201
- Xydar: Reactors R-201 A/B/C, Mixers R-202 A/B/C
- KetaSpire/NovaSpire: Hot oil heater and boiler

For new and modified equipment associated with this application the following sources will need to be added:

- Amodel: 52
- Sulfone: Raw material production process

9.1.2 Incinerators (391-3-1-.02 (2)(c)), Rule c

The existing Waste Heat Recovery Boiler (WHB) in the Sulfone process area is subject to this rule. No changes are proposed for the WHB as part of this project; thus, no changes in applicability or requirements for the WHB are needed. None of the other existing processes contain incinerators and none are proposed for the existing processes; therefore, no new equipment needs to be added for this project.

9.1.3 Fuel-burning Equipment (391-3-1-.02 (2)(d)), Rule d

The existing processes have fuel-burning equipment as defined by this rule, but none of the existing equipment is being modified as part of this this project. One new oil heater will be added to the KetaSpire/NovaSpire process that will be subject to this rule. The new heater will only be capable of burning natural gas and fuel oil for periods of natural gas curtailment at a heat input less than 10 million Btu/hr.

9.1.4 Particulate Emissions from Manufacturing Processes (391-3-1-.02 (2)(e)), Rule e

PM emissions are quantified from manufacturing processes on a pound per hour (lb/hr) basis by Rule e as follows:

For process weights up to 30 tph: $E = 4.10 P^{0.67}$

Or,

For process weight rates greater than 30 tph: E = 55.0 $P^{0.11}$ - 40

Where:

E = the allowable emission rate in lbs/hr,

P = process weight rate in tons per hour (tph).

The existing processes are subject to this regulation as described in Condition 3.4.2 of the Title V permit. The Amodel solid stating process is subject to this requirement as well as the SO_3 process.

9.1.5 Sulfur Dioxide Limits From Fuel-burning Sources (391-3-1-.02(2)(g)), Rule g

This rule requires that for all fuel burning sources below 100×10^{6} Btu/hr shall not burn fuel containing more than 2.5 percent sulfur, by weight. Solvay's boilers and heaters are limited to use of natural gas and distillate fuel oil. The natural gas sulfur content is negligible, and the distillate oil sulfur content is less than 0.5 percent by weight.

9.1.6 Sulfuric Acid Plants (391-3-1-.02(2)(g)), Rule j

Solvay does not currently operate a sulfuric acid plant.

⁵³ The GA EPD rules do not define sulfuric

acid plant, but a US EPA regulation provides the following definition:

(a) Sulfuric acid production unit means any facility producing sulfuric acid by the contact process by burning elemental sulfur, alkylation acid, hydrogen sulfide,

organic sulfides and mercaptans, or acid sludge, but does not include facilities where conversion to sulfuric acid is utilized primarily as a means of preventing emissions to the atmosphere of sulfur dioxide or other sulfur compounds.

The proposed process unit does not produce sulfuric acid; thus, this rule does not apply. A 2002 EPA NSPS applicability determination supports this conclusion and can be accessed from the following link:

https://cfpub.epa.gov/adi/index.cfm?fuseaction=home.dsp_show_file_contents&CFID=26212 343&CFTOKEN=ae820ad226c1907e-FCB77F9E-B757-6825-9CDBC1E9F6B16F73&id=0200085.

9.1.7 Fugitive Dust (391-3-1-.02(2)(n)), Rule n

This rule requires that all processing, handling, transportation, or storage facility operations resulting in fugitive dust must take reasonable precautions to prevent the dust from being airborne through the application of suppressants, covering, or vents. Opacity is limited to 20 percent. Solvay does not anticipate any fugitive dust will be generated by these processes under normal conditions because operations are enclosed, dusty materials are not stored outside such as in piles, conveying operations are completely enclosed, and filters are used to collect PM emissions from transfer operations.

9.1.8 Nitrogen Oxides Emissions From Fuel-burning Equipment (391-3-1-.02(2)(III)), Rule III

This regulation limits the emission of NO_x from an affected unit under this subparagraph that is installed or modified on or after May 1, 1999, to exceed 30 parts per million (ppm) at 3 percent oxygen on a dry basis. This regulation only applies to operations that are located in the counties of Banks, Barrow, Bartow, Butts, Carroll, Chattooga, Cherokee, Clarke, Clayton, Cobb, Coweta, Dawson, DeKalb, Douglas, Fayette, Floyd, Forsyth, Fulton, Gordon, Gwinnett, Hall, Haralson, Heard, Henry, Jackson, Jasper, Jones, Lamar, Lumpkin, Madison, Meriwether, Monroe, Morgan, Newton, Oconee, Paulding, Pickens, Pike, Polk, Putnam, Rockdale, Spalding, Troup, Upson, and Walton. Solvay is located in Richmond County; thus this regulation does not apply.

9.1.9 Prevention of Significant Deterioration (391-3-1-.02(7))

The potential emissions of the existing equipment without considering controls and permits limits is above the Prevention of Significant Deterioration (PSD) threshold for qualification as a major source of 100 tpy for all PSD pollutants. Solvay has federally enforceable limits on SO2, CO, NOX and VOC of 100 tpy each, thus the facility is not a major source considering emission controls and federally enforceable limits. No change in current limits is needed to classify the source as non-major as the potential-to-emit (PTE) for the sum of existing sources considering controls and permit limits is less than the PSD major source thresholds.

The proposed projects related to modification of the existing processes as well as the new Sarsaparilla process will result in increases in emissions of PSD pollutants. Table 9-1 summarizes

the maximum anticipated actual emissions, which are also representative of projected actual emissions for the facility after completion of all projects.

CRITERIA POLLUTANT	Amodel (tpy)	Compounding (tpy) ⁽¹⁾	KetaSpire / NovaSpire (tpy)	Sulfone (tpy) ⁽²⁾	Verian / Xydar (tpy)	PUSH (tpy)	Sarsaparilla (tpy)	TOTAL PTE (tpy)
СО	8.13		13.27	28.13	7.41		10.32	68.1
NOx	13.89		21.19	33.86			28.30	98.3
PM	2.16	15.69	37.64	9.25	0.01	0.27	19.94	86.7
PM10	1.96	15.69	37.64	9.25	0.01	0.27	19.94	86.5
PM _{2.5}	1.96	15.69	37.64	9.25	0.01	0.27	19.94	86.5
SO ₂	7.02		19.68	0.27			25.38	52.4
VOCs	7.87	5.09	5.48	32.11	0.11	9.59	32.42	94.4

 Table 9-1

 Summary of Maximum Anticipate Actual Emissions for the Augusta Facility

After implementation of these projects, the Solvay facility will remain a minor source of emissions for PSD applicability considering the 100 tpy permit limits in Condition 3.2.1, 3.2.2., and 3.2.3 of the Title V permit. For consistency, the new heater in the KetaSpire process as well as the boiler and thermal oxidizers in the Sarsaparilla process should be added to the table in 3.2.1.

9.2 Part 60 New Source Performance Standards

GA EPD is the designated authority for New Source Performance Standards (NSPS) regulations; these regulations are incorporated by reference into Georgia's regulations. The following subsections described the potentially applicable NSPS and the applicable limits.

9.2.1 USEPA Regulation 40 CFR 60 Subpart Db

This NSPS applies to boilers with a capacity greater than 100×10^6 Btu/hr heat. No boilers exceeding this capacity are proposed for this project.

9.2.2 USEPA Regulation 40 CFR 60 Subpart Dc

This NSPS applies to boilers with a capacity between 10×10^6 and 100×10^6 Btu/hr heat input (2.9 and 29 megawatts). The new boiler is potentially subject to the requirements of this rule, but the new oil heater has a heat input capacity less than 10×10^6 Btu/hr, thus it is not subject to the requirements of this rule. If the boiler only burns natural gas, then there are no limits under this rule. If No. 2 fuel oil is used as a fuel, even as a backup, then the following limits apply:

- 20 percent opacity
- Limit fuel oil to 0.5 percent sulfur by weight or limit SO2 emissions to 0.50 lb/MMBtu
- limit PM emissions to 0.030 lb/MMBtu if the boiler is greater than 30 MMBtu/hr

Paragraph (4) of 60.43c(d) exempts sources that burn only fuels not subject to a PM limit and fuel oil with a sulfur content of less than 0.5 weight percent sulfur from this standard. Solvay requests a limit of 0.5 weight percent sulfur be added to the permit to exempt the 99.5 MMBtu/hr boiler from PM limits, PM testing, and PM monitoring.

9.2.3 USEPA Regulation 40 CFR 60 Subpart Kb

This NSPS applies to storage vessels with a capacity that exceeds 75 m³ (19,813 gallons) and are used to store volatile organic liquid (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.

Most of the tanks at Solvay qualify as process tanks, as defined below:

Process tank means a tank that is used within a process (including a solvent or raw material recovery process) to collect material discharged from a feedstock storage vessel or equipment within the process before the material is transferred to other equipment within the process, to a product or by-product storage vessel, or to a vessel used to store recovered solvent or raw material. In many process tanks, unit operations such as reactions and blending are conducted. Other process tanks, such as surge control vessels and bottoms receivers, however, may not involve unit operations.

Process tanks are specifically excluded from the regulation; therefore, the requirements of this regulation do not apply to process tanks. With the exception of certain Udel tanks, the other tanks at the Solvay facility are exempt from control requirements due to their size and / or vapor pressure. The current Title V provides the necessary requirements for Subpart Kb for the Udel tanks.

The proposed projects for Amodel, Compounding, Xydar/Verian, and PUSH areas do not include any new storage vessels for organic liquids.

The Compounding process modifications include addition of a ⁵⁴ storage vessel to feed the process. The vessel will have a capacity of approximately 12 liters, which is much less than the 19,813 gallons threshold for applicability in the rule.

The KetaSpire/NovaSpire area does include eight new wash vessels, but these are process tanks as defined above and the material stored in these tanks is non-VOC solvent with water. The wash vessels are specifically exempt from the definition of VOCs by 51.100(s); thus, the requirements of this regulation will not be applicable.

The additional tanks for the Sulfone area are process tanks exempt from this rule.

9.2.4 USEPA Regulation 40 CFR 60 Subpart Kc

This NSPS is a proposed rule that will apply to storage vessels with a capacity that exceeds 75.7 m³ (20,0000 gallons) and are used to store volatile organic liquid (VOL) for which construction, reconstruction, or modification is commenced after October 4, 2023. In general, the requirements and applicability for Kc are similar to Kb except that all affected storage vessels with a VOL that has a maximum true vapor pressure greater than 11.1 psia are subject to control requirements and VOLs with a vapor pressure greater than 1.5 psia stored in a tank with a capacity greater than 1,000,000 gallons require control. Solvay does not have any tanks that meet these criteria and none of the proposed tanks will exceed the Subpart Kc volume and / or vapor pressure thresholds. (Ethanol has a vapor pressure of 13 kPa (1.89 psia) and methanol has a vapor pressure of 26 kPa (3.77 psia), but these tanks have a capacity of much less than 1,000,000 gallons).

9.2.5 Standards of Performance for Synthetic Organic Chemicals Manufacturing Industry; Subparts VV, III, and RRR

These three Synthetic Organic Chemical Manufacturing Industry (SOCMI) standards of 40 CFR 60 that apply to facilities which manufacture a SOCMI chemical as listed in 60.489, 60.617, and 60.707. The existing processes (PUSH, Sulfone, Amodel, KetaSpire, and Verian) use listed chemicals as a raw materials and produce listed chemicals as contaminants which are listed chemicals in these rules. However, these processes do not <u>produce</u> these materials and these rules do not apply.

9.2.6 Standards of Performance for Synthetic Organic Chemicals Manufacturing Industry; Subpart NNN

This SOCMI standard of 40 CFR 60 applies to facilities that manufacture a SOCMI chemical as listed in 60.667. The existing processes (PUSH, Sulfone, Amodel, KetaSpire, and Verian) use listed chemicals as raw materials and produce listed chemicals as contaminants which are listed chemicals in these rules. However, since these processes do not <u>produce</u> these materials, these rules do not apply. Two applicability determinations posted on the USEPA's Clean Air Act (CAA) Applicability Determination Index (ADI) relevant to this determination are included in Appendix P.

9.2.7 Standards of Performance for Volatile Organic Compound Emissions from the Polymer Manufacturing Industry; Subpart DDD

These standards apply to polypropylene, polyethylene, polystyrene, or poly (ethylene terephthalate) manufacture. The proposed equipment will be involved in productions of polymers or monomers that are not listed in this rule; thus, this regulation does not apply.

9.2.8 Standards of Performance for Synthetic Fiber Production Facilities; Subpart HHH

Subpart HHH applies to *solvent-spun synthetic fiber processes*. The Solvay processes are not fiber manufacturing processes.

9.2.9 Standards of Performance for Synthetic Organic Chemical Manufacturing Industry Wastewater Treatment Plants; Subpart YYY (Proposed Rule)

This proposed rule currently applies to organic wastewater compounds at SOCMI production facilities. SOCMI production facilities are delineated in Table 1 of the rule. The manufacturing processes utilize compounds listed in Table 1 of the Rule; however, the facility does not produce these chemicals, so the requirements of the regulation are not applicable.

9.3 Part 61 National Emission Standards for Hazardous Air Pollutants

GA EPD is the designated authority for these National Emission Standards for Hazardous Air Pollutants (NESHAPs) regulations; these regulations are incorporated by reference into Georgia's regulations. The following subsection describes the potentially applicable NESHAPs and the applicable limits.

9.3.1 National Emission Standards for Hazardous Air Pollutant for Benzene Operations; Subparts J, Y, V, BB, and FF

These standards apply to benzene operations as defined in the applicable regulations. Since the proposed operations may contain benzene, these regulations may apply. Benzene is created as a product of degradation of raw material used in the process. Specifically, applicability criteria and thresholds are described below.

Storage vessels less than 10,000 gallons capacity are exempted. Solvay does not currently nor does it plan to operate any storage vessels with a capacity of greater than 10,000 gallons that store benzene; thus, the storage vessel provisions do not apply.

Benzene waste operations that exceed 11 tpy of benzene in all waste streams are subject to provisions for wastes. The Solvay facility does not and will not produce benzene at a rate that exceeds 11 tpy. Benzene concentrations in proposed processes will be less than 10 ppmw.

Leak Detection and Repair (LDAR) requirements apply to equipment which contacts a fluid with a concentration of greater than 10 percent benzene by weight. Solvay does not have any streams that have greater than 10 percent benzene by weight.

9.4 Part 63 National Emission Standards for Hazardous Air Pollutants for Source Categories

GA EPD is the designated authority for these NESHAPs regulations; these regulations are incorporated by reference into Georgia's regulations. The following subsections describe the potentially applicable NESHAPs and the applicable limits.

9.4.1 National Emission Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry; Subparts F, G, H, and I

The Sulfone and Xydar process utilizes HAPs which are listed in Table 1 of 40 CFR 63 Subpart F. These processes do not <u>produce</u> any Table 1 HAP; thus these Subparts do not apply.

9.4.2 National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins; Subpart U

Subpart U applies to elastomer production; elastomers are defined in the regulation to include the following:

- Butyl Rubber
- Halobutyl Rubber
- Epichlorohydrin Elastomer
- Ethylene Propylene Rubber
- HypalonTM
- Polybutadiene Rubber/Styrene
 Butadiene Rubber by Solution

- Neoprene
- Nitrile Butadiene Rubber
- Nitrile Butadiene Latex
- Polysulfide Rubber
 - Styrene Butadiene Latex
 - Styrene Butadiene Rubber by Emulsion

Since the processes do not produce any of these elastomers and the proposed changes do not result in the capacity to produce elastomers, the equipment is not subject to this regulation.

9.4.3 National Emission Standards for Pharmaceuticals Production and National Emission Standards for Hazardous Air Pollutants for Pesticide Active Ingredient Production; Subparts GGG and MMM

These regulations apply to pharmaceutical and pesticide production as defined in the regulations. Because the existing processes will not produce pharmaceuticals or pesticides, this regulation is not applicable.

9.4.4 National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins, Subpart JJJ

Subpart JJJ applies to *thermoplastic product process units*. Since the products for the existing processes are not listed thermoplastic products, the requirements of this regulation are not applicable.

9.4.5 National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline); Subpart EEEE

The applicability of this standard, referred to as the Organic Liquid Distribution (OLD) Maximum Achievable Control Technology (MACT), is determined by the material(s) stored and transferred into or out of the facility. The standard exempts equipment subject to the requirements of another 40 CFR 63 NESHAPs. Since the Xydar, Sulfone, PEEK, and PUSH processes are subject to 40 CFR 63 Subpart FFFF (MON), they are exempt from this regulation. The Compounding process modifications include addition of a 55 storage vessel to feed the process with a capacity of 12 liters. Because it does not contain any HAP, it is not subject to this rule. The KetaSpire/NovaSpire project includes eight new 56 vessels, but these are process tanks and the material contained in these tanks is non-VOC and non-HAP solvent with water; thus these tanks are not subject to this rule.

9.4.6 National Emission Standards for Hazardous Air Pollutants: Industrial and Commercial Boilers; Subpart DDDDD

This standard applies to all facilities that own or operate an industrial, commercial, or institutional boiler or process heater that is located at a major source of HAP. The Solvay facility is currently a major source of HAP and will be subject to this subpart. Solvay plans to add one oil heater and one boiler as part of this project. These combustion devices are subject to this regulation. Because these units will primarily burn natural gas and only use fuel oil No.2 during periods of curtailment and for testing, there are no applicable emissions limits. The only requirement is a work practice to perform a tune up of the associated burners.

9.4.7 National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing; Subpart FFFF

This NESHAP requirement, referred to as the Miscellaneous Organic Chemical Manufacturing National Emission Standards for Hazardous Air Pollutant (MON), applies to major sources of HAP that produce a MON chemical. MON chemicals are defined as those with the following Standard Industrial Classification (SIC) or North American Industry Classification System (NAICS) codes: 282, 283, 284, 285, 286, 287, 289, or 386 and NAICS code 325. The Solvay facility, as currently configured, is subject to the MON requirements because it is a major source and has MON-regulated sources. Specifically, the PUSH, KetaSpire/NovaSpire, Sulfone and Xydar production processes are subject to MON. Compounding is currently exempt because it does not use or produce HAPs. The current Title V permit reflects applicable MON requirements for each of these processes. The following sections describe applicability and requirements for new or changed equipment.

Amodel

The Amodel process is not currently regulated as a MON process. The proposed change to the Amodel process involves addition of a ⁵⁷ step to allow for an increase in production. The solid stating equipment performs the same function as existing equipment; there is no change in process chemistry. The Amodel process does not use, produce, or emit HAP, nor will it use, produce, or emit HAP after the addition of the solid stating equipment. Thus, the MON is not and will not be applicable to Amodel.

Compounding

The Compounding process is not currently regulated as a MON process. The proposed changes to the Compounding process involve installing additive feeders, extruders, and solids conveying equipment similar to existing equipment. The existing and new compounding processes do not use or produce HAP. The D7 extruder will utilize 58 to produce certain specific polymers. 59 is not a HAP or TAP, but it produces methanol in the extrusion process, which is a HAP and TAP. The methanol will be emitted from the process in the air and a portion will be captured by the liquid ring vacuum pump which results in a discharge of methanol containing wastewater. Thus, the air emissions and wastewater discharge are potentially subject to MON emission limits.

The air emissions limits for processes in the MON rule are categorized as either batch or continuous process vents. Batch operation "...means a noncontinuous operation involving intermittent or discontinuous feed into equipment, and, in general, involves the emptying of the equipment after the operation ceases and prior to beginning a new operation. Addition of raw material and withdrawal of product do not occur simultaneously in a batch operation." Continuous process vents (CPV's) are vents from any operation that is not a batch operation. The D7 process involves continuously feeding raw materials to the extruder system and continuously removing product where feeding and removal operations generally occur simultaneously except for periods of startup and shutdown. Thus, this operation's vents are considered CPVs. The estimated TRE values are greater than 1.9; the vacuum pump vent has a TRE less than 5.0. The other two vents have a TRE greater than 10. As such, each of these is a group 2 vent. Because the vacuum pump vent has a TRE less than 5.0, testing will be required after startup to verify the TRE calculation inputs.

The liquid ring vacuum pump will capture methanol and route it to wastewater. Wastewater designated as 'group 1' requires control while 'group 2' wastewater does not. Group 1 wastewater designation is based on the 63.2485(c). Methanol is a Table 9 compound; several other HAP are contained in the wastewater at low concentrations as summarized in Appendix E. The sum of Table 8 and 9 compounds is less than 30,000 ppm and the sum of Table 8 compounds is much less than 1,000 ppm. Thus this wastewater stream is a group 2 stream. The Compounding process does not have any of the following:

- Process vents that emit hydrogen halide and halogen HAP or HAP metals
- Storage tanks
- Surge control vessels and bottoms receivers
- Equipment contacting > 5% HAP
- Heat exchange systems
- Transfer Racks

Thus, there are not any MON requirements associated with these operations.

KetaSpire / NovaSpire

The KetaSpire/NovaSPire product is classified as a thermoplastic resin and covered by SIC Code 2821 and NAICS 325211.

.⁶⁰ Each of these chemicals are either hydrogen halide, halogen HAP, or organic HAP as listed by 63.2435(b)(2). The miscellaneous organic chemical manufacturing process units (MCPUs) is not an affected source or part of an affected source under another subpart of this Part 63 and is not a batch operation within a chemical manufacturing process unit (CMPU), as identified in §63.100(j)(4). Therefore, the process is subject to MON.

The pertinent changes in the KetaSpire/NovaSpire area are addition of raw material handling, a reactor with scrubber, replacement of ________,⁶¹ a new dryer, and distillation column with condenser. This equipment serves the same purpose as existing equipment in this area. The additional equipment does not change the product, raw materials or chemistry of the process; this equipment allows for increased production. As such, there is no impact on the regulatory requirements for the existing equipment, and this discussion focuses on the new equipment.

The process contains the following categories of sources that may be regulated by MON:

- Continuous process vents
- Batch process vents
- Process vents that emit hydrogen halide and halogen HAP or HAP metals
- Storage tanks
- Equipment leaks
- Wastewater

The following MON-regulated categories of sources are not part of the process:

- Transfer racks
- Heat exchange systems

Transfer racks regulated by MON are limited to those that are, "...used to fill tank trucks and/or rail cars with organic liquids that contain one or more of the organic HAP." The existing and proposed equipment does not include any systems for conveying organic liquids for rail or truck loading.

The definition of heat exchange system is contained in 63.101 and is provided for reference:

Heat exchange system means any cooling tower system or once-through cooling water system (e.g., river or pond water). A heat exchange system can include more than one heat exchanger and can include an entire recirculating or once-through cooling system.

The existing and proposed equipment does include a heat exchange system. Heat exchange systems that contact materials listed in Table 4 of Subpart F at a level above 5 percent by weight are applicable to the standard. The existing and proposed equipment do not contain any of the materials in Table 4 at concentration above 5 percent by weight in the process.

The MON regulations provide different levels of applicability and control for new versus existing sources. A *new affected source* is described in the rule by the following paragraphs in 63.2440:

Each affected source defined in paragraph (b) of this section for which you commenced construction or reconstruction after April 4, 2002, and you meet the applicability criteria at the time you commenced construction or reconstruction.

Each dedicated MCPU that has the potential to emit 10 tons per year (tpy) of any one HAP or 25 tpy of combined HAP, and you commenced construction or reconstruction of the MCPU after April 4, 2002. For the purposes of this paragraph, an MCPU is an affected source in the definition of the term "reconstruction" in §63.2.

The affected source for this rule is delineated as, "...the facility-wide collection of MCPU and heat exchange systems, wastewater, and waste management units that are associated with manufacturing materials described in §63.2435(b)(1)." Since the process will be part of the facility-wide collection of MCPU and is not being reconstructed, this is not a new source.

Continuous Process Vent

A continuous process vent is the point of discharge of an operation that is not a batch operation, storage tank, or equipment leak. Emissions for vents that are less than or equal to 0.005 weight percent (50 ppmw) total HAP are not continuous process vents. Table 9-2 summarizes the new emission sources at the facility and the basis for inclusion or exclusion from consideration of a continuous process vent. The existing process does not have any continuous process vents.

STACK IDS	SOURCE DESCRIPTION	CONTINUOUS PROCESS VENT	IF NO, BASIS FOR EXCLUSION
SD-23, SD-24, SD-25, SD-26, SD-27, SD-29, SM-10, SM-11, SM-12, SM-13	Non-HAP unloading and conveying	No	<50 ppmw total HAP
SD-22, SD-28	HQ and DFBP Sack unloading and conveying	No	Batch Process Vents
SB-3	Hot oil heater	No	Ancillary activity, see 63.2550
SH-3	Reactor	No	Batch process vent
SA-7, SA-8	⁶² and tank farm	No	<50 ppmw total HAP
SA-9	Drying	No	<50 ppmw total HAP

Table 9-2 Continuous Process Vent Determination

Batch Process Vents

Batch process vents are vents from one or more unit operations within a process such as vents on condensers used for product recovery, reactors, filters, centrifuges, and process tanks. The following are not batch process vents for the purposes of this subpart:

- Continuous process vents;
- Bottoms receivers;
- Surge control vessels;
- Vents on storage tanks, wastewater emission sources, or pieces of equipment subject to the emission limits and work practice standards in Tables 4, 6, and 7 to this subpart;
- Emission streams from emission episodes that are undiluted and uncontrolled containing less than 50 ppmv HAP are not part of any batch process vent. A vent from a unit operation, or a vent from multiple unit operations that are manifolded together, from which total uncontrolled HAP emissions are less than 200 lb/yr is not a batch process vent; emissions for all emission episodes associated with the unit operation(s) must be included in the determination of the total mass emitted.

The units listed in Table 4 with a concentration of less than 50 ppmw are also less than 50 ppmv and are not batch process vents based on the HAP concentration. (To avoid confusion, note that continuous process vents are exempt based on a level of 50 ppmw and batch process vents are exempt based on a level 50 ppmv.) The KetaSpire/NovaSpire process reactor vent is considered a batch process vent. The HAP emitted from the reactor is HF. The emissions of HF exceed 50 ppmv, so this is a batch process vent.

Under Subpart FFFF, batch process vents require control if they are designated as Group 1. Group 2 vents do not require control. Group 1 batch process vent is defined in the rule as a vent that is greater than or equal to 10,000 lb/yr of organic HAP at an existing source or greater than or equal to 3,000 lb/yr of organic HAP at a new source. The reactor vent does not emit organic HAP; it is only a source of hydrogen halide or halogen HAP.

The HQ conveying bins are considered batch process vents. The sum of the emissions from the new and existing sources is 1,578 lbs/yr. Because the sum is less than 10,000 lb/yr, these are considered a group 2 batch process vent.

Process Vents That Emit Hydrogen Halide and Halogen HAP or HAP Metals

Subpart FFFF defines hydrogen halide and halogen HAP as hydrogen chloride, hydrogen fluoride, and chlorine. Process vents are batch and continuous process vents; storage tanks, and equipment leaks are specifically exempted from the definitions of batch and continuous process vents. Table 9-3 summarizes the sources that emit hydrogen halide and halogen HAP and are considered process vents.

SOURCE ID	SOURCE DESCRIPTION	HYDROGEN HALIDE OF HALOGEN HAP EMITTED	HYDROGEN HALIDE OR HALOGEN HAP UNCONTROLLED EMISSION RATE (Ib/yr)
PR-200	Reactor	Yes	462
PR-2200	Reactor	Yes	462
Total			924

 Table 9-3

 Summary of Hydrogen Halide and Halogen HAP Emission Sources

1. PR-200 is the existing reactor, PR-2200 is the new reactor.

 Uncontrolled emissions for PR-200 are from uncontrolled emissions 8,760 hr/yr basis from May 1-5, 2017 test report plus a ratioed capacity increase to account for increase in production achieved through shortening the reactor cycle.

3. Uncontrolled emissions from PR-2200 are equivalent to PR-200 because the reactors are identical in design capacity and throughput.

Because the collective uncontrolled hydrogen halide and halogen HAP emissions from the KetaSpire/NovaSpire process vents are less than 1,000 pounds per year (lb/yr), the control requirements in the rule do not apply.

If emissions exceed 1,000 lb/yr then the requirements of Table 3 in Subpart FFFF would apply. Table 3 provides for three control options as follows:

- Reduce hydrogen halide and halogen HAP by 99 percent
- Meet an outlet hydrogen halide and halogen HAP concentration of less than or equal to 20 ppmv
- Reduce the halogen atom mass emission rate from the sum of all batch process vents and each individual continuous process vent to ≤0.45 kg/hr

Scrubbers SC-1 and SC-3 are designed to meet the 20 ppmv requirement; the scrubber vendor will provide a guarantee of 20 ppmv for the PR-2200.

HAP metals are the metal portion of the following compounds: antimony, arsenic, beryllium, cadmium compounds, chromium, cobalt, lead, manganese, mercury, nickel, and selenium. The KetaSpire/NovaSpire process does not use, produce, or generate HAP metals so the requirements of this section are not applicable. Further, the HAP metals requirements only apply to new sources. The KetaSpire/NovaSpire process is considered existing as described previously, thus the requirements for HAP metals do not apply.

Storage Tanks

The only vessel used in the KetaSpire/NovaSpire process that is considered a storage tank is the existing acid storage tank. The acid storage tank has a capacity of less than 10,000 gallons, thus it is classified as Group 2 storage tank and does not require control. No changes to the acid storage tank are proposed as part of this application.

Equipment Leaks

The equipment leak requirements contained in Table 6 of Subpart FFFF apply to equipment that either contains or contacts a fluid (liquid or gas) that is at least 5 percent by weight of total organic HAP. The only organic HAP in this process is hydroquinone, which is a solid with low vapor pressure. Based on current operational information, none of the equipment exceeds the LDAR applicability thresholds. Solvay will implement one of the leak detection and repair program (LDAR) options in Table 6 of the MON rule if any new equipment exceeds the applicability thresholds, but Solvay expects that process will continue to be exempt from LDAR requirements.

Wastewater

Wastewaters potentially subject to requirements of Subpart FFFF are those that meet one of the following two criteria:

- annual average concentration of compounds in Tables 8 and 9 to Subpart FFFF of at least 5 ppmw and has an annual average flow rate of 0.02 liters per minute or greater; or
- annual average concentration of compounds in Tables 8 and 9 to this Subpart of at least 10,000 ppmw at any flow rate

The KetaSpire/NovaSpire process does not use, produce, or generate any of the compounds listed in Table 8 or 9 at a concentration above 5 ppmw, thus the process does not generate wastewater subject to the provisions of this rule.

This application also serves to satisfy the notification requirements under

 Subpart A, §63.9(b) and 63.5 Table 11 of Subpart FFFF: Pre-compliance Report 63.2520(c)

Sulfone

The Sulfone production process manufactures a product that has an SIC of 2865, which is one of the MON categories and uses MCB, a HAP, as a raw material. Therefore, the Sulfone process is subject to MON. The Sulfone process contains the following categories of sources that may be regulated by MON:

- Continuous process vents
- Batch process vents
- Process vents that emit hydrogen halide and halogen HAP or HAP metals
- Storage tanks
- Surge control vessels and bottoms receivers.
- Equipment leaks
- Wastewater
- Heat exchange systems

The following MON-regulated category of sources is not part of the process:

Transfer racks

Transfer racks regulated by MON are limited to those that are, "...used to fill tank trucks and/or railcars with organic liquids that contain one or more of the organic

HAP." The process does not include any systems for conveying organic liquids for rail or truck loading.

The definition of heat exchange system is contained in 63.101 and is quoted below for reference:

Heat exchange system means any cooling tower system or once-through cooling water system (e.g., river or pond water). A heat exchange system can include more than one heat exchanger and can include an entire recirculating or once-through cooling system.

The process does include a heat exchange system. However, each of the heat exchangers within this system qualify for one or more of the exemptions outlined within this subpart and therefore are exempt from MON standards. No new heat exchangers are proposed as part of the expansion project.

The MON regulations provide different levels of applicability and control for new versus existing sources. A *new affected source* is described in the rule by the following paragraphs in 63.2440:

- 1. Each affected source defined in paragraph (b) of this section for which you commenced construction or reconstruction after April 4, 2002, and you meet the applicability criteria at the time you commenced construction or reconstruction.
- 2. Each dedicated MCPU that has the potential to emit 10 tons per year (tpy) of any one HAP or 25 tpy of combined HAP, and you commenced construction or reconstruction of the MCPU after April 4, 2002. For the purposes of this paragraph, an MCPU is an affected source in the definition of the term "reconstruction" in §63.2.

The affected source for this rule is delineated as, "...the facility-wide collection of MCPU and heat exchange systems, wastewater, and waste management units that are associated with manufacturing materials described in §63.2435(b)(1)." Since the process will be part of the facility-wide collection of MCPU and does not have emissions of HAP that exceed 10/25 tpy thresholds it is not considered a new source under MON.

Continuous Process Vent

A continuous process vent is the point of discharge of an operation that is not a batch operation, storage tank, or equipment leak. Emissions for vents that are less than or equal to 0.005 weight percent (50 ppmw) total HAP are not continuous process vents. All vents associated with the Sulfone process, other than the MIS reactor vent, are considered continuous process vents (CPVs). For existing sources, only Group 1 CPVs, defined as having a Total Resource Effectiveness (TRE) index value ≤1.9, are subject to MON emission control requirements. All other CPVs (*i.e.*, TRE >1.9) are called Group 2 CPVs and not subject to MON. However, Group 2 CPVs that have a TRE >1.9 but <5.0 are subject to certain requirements for its condensers.

TRE is determined using values from engineering assessment data or from field measurement data. If the TRE calculated using engineering assessment data is <5.0, the regulations require that TRE be re-calculated using measured values for vent stream flow rate, emission rate of organic HAP and net heating value. No field measurements are required if the TRE estimated using engineering assessment is ≥5.0.

The TRE values for the new and modified vents were calculated and all vents have TRE values greater than 1.9, which removes them from Group 1 category and places them into the Group 2 CPVs category. However, TRE values for vents LE-679, LE-576 and LE-680 are less than 5.0, so additional monitoring will be required as specified in 40 CFR 63.993 (c)(2). The facility proposes that the outlet coolant temperature of each of these vent condensers be monitored once per shift consistent with current permit Conditions 5.2.1.h. and 6.1.7.c.iv., which require a maximum outlet coolant temperature 12.8°C.

Revised TRE calculations are contained in Appendix I.

Batch Process Vents

Batch process vents are vents from one or more unit operations within a process such as vents on condensers used for product recovery, reactors, filters, centrifuges, and process tanks. The following are not batch process vents for the purposes of this subpart:

- CPVs;
- Bottoms receivers;
- Surge control vessels;
- Vents on storage tanks, wastewater emission sources, or pieces of equipment subject to the emission limits and work practice standards in Tables 4, 6, and 7 to this subpart; and
- Emission streams from emission episodes that are undiluted and uncontrolled containing less than 50 ppmv HAP are not part of any batch process vent. A vent from a unit operation, or a vent from multiple unit operations that are manifolded together, from which total uncontrolled HAP emissions are less than 200 lb/yr is not a batch process vent; emissions for all emission episodes associated with the unit operation(s) must be included in the determination of the total mass emitted.

 TRC Environmental Corporation / Solvay Specialty Polymers

 Air Permit Application REDACTED COPY
 9-18

 \\employees.root.local\env\ecc\Greenville\wpgvl\pitz\5224030000\rs224030000-001 PERMIT APPLICATION-REDACTED COPY.DOCX

The existing and new MIS cracking reactor vent is the only *batch process vent*. The determination of whether control of this vent is required depends on the determination of group status; Group 1 vents require control, while Group 2 vents are exempted from control requirements.

Group 1 batch process vent means each of the batch process vents in a process for which the collective uncontrolled organic HAP emissions from all of the batch process vents are greater than or equal to 10,000 lb/yr at an existing source or greater than or equal to 3,000 lb/yr at a new source.

The uncontrolled HAP emissions rate from the MIS cracking reactors is 5,400 lb/yr. Since this is less than the emission thresholds for categorization as a Group 1 batch process vent, this vent is categorized as a Group 2 batch process vent.

Process Vents That Emit Hydrogen Halide and Halogen HAP or HAP Metals

Subpart FFFF defines hydrogen halide and halogen HAP as hydrogen chloride, hydrogen fluoride, and chlorine. Process vents are batch and CPVs; storage tanks, and equipment leaks are specifically exempted from the definitions of batch and CPVs. No source within the Sulfone process emits hydrogen halide and halogen HAP.

Storage Tanks

Under Subpart FFFF, storage tanks require control if they are designated as Group 1. Group 2 tanks do not require control. Group 1 tanks are defined in the rule as a tank that meets the following criteria:

- a capacity greater than or equal to 10,000 gal; and
- stores a material that has a maximum true vapor pressure of total HAP greater than or equal to 6.9 kilopascals (kPa) at an existing source or greater than or equal to 0.69 kPa at a new source.

Vessels within the Sulfone process stored either Sulfone monomer or MCB. Sulfone monomer does not contain HAP. The true vapor pressure of MCB at storage conditions is 2.756 kPa which is lower than the 6.9 kPa to be considered a Group 1 tank. Therefore, all tanks within the Sulfone process are Group 2 tanks, are exempt from MON, and no additional controls or monitoring will be necessary.

Equipment Leaks

 The equipment leak requirements contained in Table 6 of Subpart FFFF apply

 to equipment that either contains or contacts a fluid (liquid or gas) that is at

 TRC Environmental Corporation / Solvay Specialty Polymers

 Air Permit Application REDACTED COPY

 9-19

least 5 percent by weight of total organic HAP. The organic HAP in this process is MCB. For equipment that exceeds 5 percent of HAP by weight, Solvay will implement the Leak Detection and Repair (LDAR) options listed in 40 CFR 63, Subpart UU – National Emission Standards for Equipment Leaks.

Wastewater

Wastewaters potentially subject to requirements of Subpart FFFF are those that meet one of the following two criteria:

- Annual average concentration of compounds in Tables 8 and 9 to Subpart FFFF of at least 5 ppmw and has an annual average flow rate of 0.02 liters per minute or greater; or
- Annual average concentration of compounds in Tables 8 and 9 to this Subpart of at least 10,000 ppmw at any flow rate

The following are categorically not considered wastewater:

- Stormwater from segregated sewers;
- Water from fire-fighting and deluge systems, including test of such systems;
- Spills;
- Water from safety showers;
- Samples of a size not greater than reasonably necessary for the method of analysis that is used;
- Equipment leaks;
- Wastewater drips from procedures such as disconnecting hoses after cleaning lines; and
- Noncontact cooling water.

Process wastewaters are further categorized as Group 1 or 2 wastewaters . Only the following streams are considered Group 1 process wastewaters:

- The total annual average concentration of compounds in Table 8 to this subpart is ≥10,000 ppmw at any flow rate, and the total annual load of compounds in Table 8 to this subpart is ≥ 200 lb/yr.
- The total annual average concentration of compounds in Table 8 to this subpart is ≥1,000 ppmw, and the annual average flow rate is ≥1 l/min; or
- The combined total annual average concentration of compounds in Tables 8 and 9 to this subpart is ≥30,000 ppmw, and the combined total annual load of compounds in Tables 8 and 9 to this subpart ≥1 tpy.

Only Group 1 wastewaters are subject to emission/treatment standards. Group 2 streams are subject only to monitoring requirements, if any. Organic wastewater discharges from various points of the Sulfone process are collected in the wastewater Equalization Tank LF-1601. This wastewater, containing mainly MCB as a pollutant, is then passed through several stages of carbon adsorption beds. Treated wastewater is discharged to the POTW under the authority of a discharge permit issued by the City of Augusta. Spent carbon (containing MCB) is periodically removed from carbon beds and held in a storage tank prior to being shipped for off-site recycling/disposal in compliance with appropriate Resource Conservation and Recovery Act (RCRA) standards.

Solvay has determined that MCB is the only HAP present in the Sulfone process's wastewater. Multiple stream discharge points and tanks consisting of sumps, drains, storage tanks and out of service tanks were identified. The MIS Cracking Equipment wastewater stream contains MCB which is a Table 8 compound. Its flow exceeds the second criteria listed above; however, its concentration is <1,000 ppmw and therefore this is a Group 2 wastewater stream. Six sumps located within this process are considered Group 2 wastewater streams due to their concentrations. All other streams are classified as "not-a-wastewater" for the purposes of this regulations because of low level of HAP concentation. and are therefore, along with the Group 2 streams, not subject to any control or treatment requirements.

STREAM NAME	COLLECT PURPOSE	HAP (MCB) CONCENTRATION (ppmw)	FLOW RATE (lpm)	WASTEWATER CATEGORY
MIS Cracking Wastewater	Wastewater Stream	500	57.84	Process Wastewater Group 2
LD-310/314 Sump #1	Decant	100	0.04	Process Wastewater Group 2
LD-310/314 Sump #2	Decant	100	0.04	Process Wastewater Group 2
LF-1601 Sump #1	Stormwater/ Leaks	250	0.07	Process Wastewater Group 2
LF-1601 Sump #2	Stormwater/ Leaks	250	0.07	Process Wastewater Group 2

Table 9-4 **Sulfone Process Liquid Streams**

The wastewater equalization tank (LF-1601) is required to have a fixed roof providing the tank contents are not heated (atmospheric vents allowed). Other waste management units are in enclosed tanks/structures meeting MON standards. Wastewater treatment residues (spent carbon, any sludge, etc.) are required to be handled in compliance with RCRA regulations and/or sold offsite for recycling. Solvay already is managing the wastes per RCRA

standards as well as selling the product for recycling. The proposed changes for Sulfone described in this application are not expected to increase the concentration of MCB in wastewater streams.

Other Requirements

The MIS Cracking process is equipped with an emergency quench drum which will only be used in the event that there is an overpressure situation in the reactor due to an uncontrolled reaction. There is also an emergency scrubber located downstream of the quench drum which is used to prevent the escape of hazardous gases to the atmosphere from the MIS Cracking process. The MON allows opening of safety devices [see 63.2450(p)] to avoid unsafe conditions and does not require control of these releases. Safety device is defined in the MON as follows:

Safety device means a closure device such as a pressure relief valve, frangible disc, fusible plug, or any other type of device which functions exclusively to prevent physical damage or permanent deformation to a unit or its air emission control equipment by venting gases or vapors directly to the atmosphere during unsafe conditions resulting from an unplanned, accidental, or emergency event. For the purposes of this subpart, a safety device is not used for routine venting of gases or vapors from the vapor headspace underneath a cover such as during filling of the unit or to adjust the pressure in response to normal daily diurnal ambient temperature fluctuations. A safety device is designed to remain in a closed position during normal operations and open only when the internal pressure, or another relevant parameter, exceeds the device threshold setting applicable to the air emission control equipment as determined by the owner or operator based on manufacturer recommendations, applicable regulations, fire protection and prevention codes and practices, or other requirements for the safe handling of flammable, combustible, explosive, reactive, or hazardous materials.

Solvay only needs to keep records of the safety device opening as required in 40 CFR 63.2525(f).

This application also serves to satisfy the notification requirements under

- Subpart A, §63.9(b) and 63.5
- Table 11 of Subpart FFFF: Pre-compliance Report 63.2520(c)

Verian / Xydar

The Verian process is not currently regulated as a MON process. Solvay intends to continue to make incremental changes in equipment, operational, and production rates in several phases over a period of up to approximately five more years. These changes are consistent with the current Title V permit and the application submitted for this process. The process does not use, produce, or emit HAP, nor will it use, produce, or emit HAP after the addition of the solid stating equipment. Thus, the MON is not and will not be applicable to Verian.

The Xydar process is subject to MON when using HAP as a raw material. No changes to the Xydar process are proposed as part of this application.

PUSH

The PUSH polymer is classified as a thermoplastic resin and covered by SIC Code 2821 and NAICS 325211. The PUSH production process uses HAPs and produces a small amount of benzene. Each of these chemicals are either HAP metal, hydrogen halide, halogen HAP, or organic HAP as listed by 63.2435(b)(2). The miscellaneous organic chemical manufacturing process units (MCPUs) is not an affected source or part of an affected source under another subpart of this Part 63 and is not a batch operation within a chemical manufacturing process unit (CMPU), as identified in §63.100(j)(4). Therefore, the PUSH process is subject to MON.

The PUSH process contains the following categories of sources that may be regulated by MON:

- Continuous process vents
- Batch process vents
- Process vents that emit hydrogen halide and halogen HAP or HAP metals
- Storage tanks
- Surge control vessels and bottoms receivers.
- Equipment leaks
- Wastewater
- Heat exchange systems

The following MON-regulated categories of sources are not part of the proposed design:

Transfer racks

Solvay proposes to add several raw materials and washing aid to the current authorization, but otherwise the process remains the same as permitted previously. The added raw materials are non-HAP and non-TAP chemicals. The added processing aid is sulfuric acid. Because the proposed changes do not require new equipment or change the HAP emission profile, there are no changes in applicability or requirements for MON. The current permit does not need to be modified to account for these changes.

9.5 Part 64 Compliance Assurance Monitoring

USEPA Regulations 40 CFR 64.2 and 40 CFR 64.5(a) require that certain sources prepare and submit a compliance assurance monitoring (CAM) plan.

Whether or not a CAM plan is required depends on the pre-control emission rates of pollutants as well as the applicability of an emission limit. The first criterion is the applicability of an emission limitation such as a PSD avoidance limit or a federally-enforceable state regulation. The second criterion is that a control device must be used to meet this limit and the uncontrolled emission rate must be greater than the Title V applicability thresholds.

The proposed application contains regulatory limitation from state and federal standards and requests for limitations certain sources to avoid applicability of PSD. Considering the fact that any applicable limits under post-1990 MACT and NSPS and that PSD avoidance limits are exempt, a CAM plan is not required for this project.

9.6 Ambient Impact Analysis for Air Toxics

Operation of the process results in emissions of several substances that must be evaluated following the Georgia Department of Natural Resources' (GA DNR's) *Guidelines for Ambient Impact Assessment of Toxic Air Pollutant Emissions, June 21, 1998*. An analysis of these emissions has been prepared and is included in Section 11.

10.0 Regulatory Analysis for Project Sarsaparilla

Based on the emissions and the control equipment, Sarsaparilla operations are potentially subject to air quality regulations that establish emissions limits and require an air permit modification.

Chapter 391-3-1 of the Georgia Environmental Protection Division (GA EPD) regulations provides emissions limits and permitting requirements in Sections .02 and .03, respectively. The potentially applicable requirements of Section .02 are described in subsequent sections of this report. Section .03 provides the permitting procedures for State Implementation Plan (SIP) permits and Title V permits.

Section .03(1)(a) requires that facilities obtain permits prior to beginning construction. This report serves as the permit application to gain authorization from GA EPD to add the equipment necessary for the proposed expansion. An electronic application was created in GEOS and submitted concurrent with this document.

The following subsections provide a summary of potentially applicable air regulations. Where the regulation is applicable, the applicable limits are provided. Where the equipment is exempt, a discussion of the exemption is provided.

10.1 Environmental Protection Division, Rule 1 – Air Quality Control Emission Limits and Standards

10.1.1 Visible Emissions (391-3-1-.02 (2)(b)), Rule b

This rule regulates emissions from emission sources to no greater than 40 percent opacity except as provided by more restrictive or specific rules. The emissions from the Sarsaparilla process will be subject to this requirement. The process is not expected to generate opacity under normal circumstances.

10.1.2 Fuel-burning Equipment (391-3-1-.02 (2)(d)), Rule d

The Sarsaparilla project includes a gas-fired boiler subject to this rule. The new boiler will only be capable of burning natural gas and fuel oil for periods of natural gas curtailment. The proposed boiler will be subject to the PM portion of this regulation, but the NOX requirement does not apply because the boiler heat input is less than 250 million Btu/hr. The applicable PM limit is given by the following formula: $P= 0.5 (10/R)^{0.5}$ lbs/MMBtu heat input per hour.

10.1.3 Particulate Emissions from Manufacturing Processes (391-3-1-.02 (2)(e)), Rule e

PM emissions are quantified from manufacturing processes on a pound per hour (lb/hr) basis by Rule e as follows:

For process weights up to 30 tph: $E = 4.10 P^{0.67}$

Or,

For process weight rates greater than 30 tph: $E = 55.0 P^{0.11} - 40$

Where:

E = the allowable emission rate in lbs/hr,

P = process weight rate in tons per hour (tph).

The proposed process is subject to this regulation. The potential emission rate of PM from the process is much less than the allowable limit.

10.1.4 Sulfur Dioxide Limits From Fuel-burning Sources (391-3-1-.02(2)(g)), Rule g

This rule requires that for all fuel burning sources below 100 MMBtus of heat input per hour shall not burn fuel containing more than 2.5 percent sulfur, by weight. The new boiler will only burn fuel with a sulfur content much less than 2.5 percent sulfur by weight.

10.1.5 Fugitive Dust (391-3-1-.02(2)(n)), Rule n

All processing, handling, transportation, or storage facility operations resulting in fugitive dust must take reasonable precautions to prevent the dust from being airborne through the application of suppressants, covering, or vents. Opacity is limited to 20 percent. Solvay does not anticipate any fugitive dust will be generated by this process under normal conditions.

10.1.6 Nitrogen Oxides Emissions From Fuel-burning Equipment (391-3-1-.02(2)(III)), Rule III

This regulation limits the emission of NO_x from an affected unit under this subparagraph that is installed or modified on or after May 1, 1999, to exceed 30 parts per million (ppm) at 3 percent oxygen on a dry basis. This regulation only applies to operations that are located in the counties of Banks, Barrow, Bartow, Butts, Carroll, Chattooga, Cherokee, Clarke, Clayton, Cobb, Coweta, Dawson, DeKalb, Douglas, Fayette, Floyd, Forsyth, Fulton, Gordon, Gwinnett, Hall, Haralson, Heard, Henry, Jackson, Jasper, Jones, Lamar, Lumpkin, Madison, Meriwether, Monroe, Morgan, Newton, Oconee, Paulding, Pickens, Pike, Polk, Putnam, Rockdale, Spalding, Troup, Upson, and Walton. Solvay is located in Richmond County; thus this regulation does not apply.

10.1.7 Prevention of Significant Deterioration (391-3-1-.02(7))

The potential emissions of the existing equipment without considering controls and permits limits is above the Prevention of Significant Deterioration (PSD) threshold for qualification as a major source of 100 tpy for all PSD pollutants. Solvay has federally enforceable limits on SO2, CO, NOX and VOC of 100 tpy each, thus the facility is not a major source considering emission controls and federally enforceable limits. No change in current limits is needed to classify the source as non-major as the potential-to-emit (PTE) for the sum of existing sources considering controls and permit limits is less than the PSD major source thresholds.

The proposed projects related to modification of the existing processes as well as the new Sarsaparilla process will result in increases in emissions of PSD pollutants. Table 10-1 summarizes the maximum anticipated actual emissions for the facility after completion of all projects, which are also representative of projected actual emissions for the facility after completion of all projects.

CRITERIA POLLUTANT	Amodel (tpy)	Compounding (tpy) ⁽¹⁾	KetaSpire / NovaSpire (tpy)	Sulfone (tpy) ⁽²⁾	Verian / Xydar (tpy)	PUSH (tpy)	Sarsaparilla (tpy)	TOTAL PTE (tpy)
СО	8.13		13.27	28.13	7.41		10.32	68.1
NOx	13.89		21.19	33.86			28.30	98.3
PM	2.16	15.69	37.64	9.25	0.01	0.27	19.94	86.7
PM10	1.96	15.69	37.64	9.25	0.01	0.27	19.94	86.5
PM _{2.5}	1.96	15.69	37.64	9.25	0.01	0.27	19.94	86.5
SO ₂	7.02		19.68	0.27			25.38	52.4
VOCs	7.87	5.09	5.48	32.11	0.11	9.59	32.42	94.4

 Table 10-1

 Summary of Maximum Anticipate Actual Emissions for the Augusta Facility

After implementation of these projects, the Solvay facility will remain a minor source of emissions for PSD applicability considering the 100 tpy permit limits in Condition 3.2.1, 3.2.2., and 3.2.3 of the Title V permit. For consistency, the new heater in the KetaSpire process as well as the boiler and thermal oxidizers in the Sarsaparilla process should be added to the table in 3.2.1.

10.2 Part 60 New Source Performance Standards

GA EPD is the designated authority for New Source Performance Standards (NSPS) regulations; these regulations are incorporated by reference into Georgia's regulations. The following subsections describe the potentially applicable NSPS and the applicable limits.

10.2.1 USEPA Regulation 40 CFR 60 Subpart Db

This NSPS applies to boilers with a capacity greater than 100×10^6 Btu/hr heat. No boilers exceeding this capacity are proposed for this project.

10.2.2 USEPA Regulation 40 CFR 60 Subpart Dc

This NSPS applies to boilers with a capacity between 10×10^6 and 100×10^6 Btu/hr heat input (2.9 and 29 megawatts). The new boiler is potentially subject to the requirements of this rule.

If the boiler only burns natural gas, there are no limits under this rule. If No. 2 fuel oil is used as a fuel, even as a backup, then the following limits apply:

- 20 percent opacity
- Limit fuel oil to 0.5 percent sulfur by weight or limit SO2 emissions to 0.50 lb/MMBtu
- limit PM emissions to 0.030 lb/MMBtu if the boiler is greater than 30 MMBtu/hr

Paragraph (4) of 60.43c(d) exempt sources that burn only fuels not subject to a PM limit and fuel oil with a sulfur content of less than 0.5 weight percent sulfur from this standard. Solvay requests a limit of 0.5 weight percent sulfur be added to the permit to exempt the 99 MMBtu/hr boiler from PM limits, PM testing, and PM monitoring.

The furnaces also combust natural gas to indirectly heat and react raw material. The furnaces are considered process heaters because they are used to heat a material (142b) to promote a chemical reaction. The definition of steam generating unit specifically excludes process heaters as defined by the rule.

10.2.3 USEPA Regulation 40 CFR 60 Subpart Kb

This NSPS applies to storage vessels with a capacity that exceeds 75 m³ (19,813 gallons) and are used to store volatile organic liquid (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.

Most of the tanks in the Sarsaparilla process qualify as process tanks, as defined below:

Process tank means a tank that is used within a process (including a solvent or raw material recovery process) to collect material discharged from a feedstock storage vessel or equipment within the process before the material is transferred to other equipment within the process, to a product or by-product storage vessel, or to a vessel used to store recovered solvent or raw material. In many process tanks, unit operations such as reactions and blending are conducted. Other process tanks, such as surge control vessels and bottoms receivers, however, may not involve unit operations.

Process tanks are specifically excluded from the regulation. Therefore, the requirements of this regulation do not apply to these tanks. The potentially applicable storage tanks are listed in Table 3. Only the VDF and 142b tank store compounds potentially considered volatile organic liquids and have a capacity greater than 75 m³; therefore, they are the only tanks that are potentially subject to the requirements of this rule. The storage pressure of 142b and VDF exceeds 100 psig. This rule specifically exempts Pressure vessels designed to operate in excess of 204.9 kPa (29.7 psi) and without emissions to the atmosphere. The Solvay facility will use vapor balancing or pressurization to eliminate emission during loading, and these tanks will not vent to atmosphere during normal operations. Furthermore, 142b is an exempt VOC thus it is not considered a Volatile Organic Liquid under Subpart Kb.

The PVDF product is stored in silos prior to loading for shipment. Because these silos store a solid material (not a liquid), these are exempt from Subpart Kb.

Solvay may also store HCl in tanks prior to shipment. Because HCl is not a VOL, it is exempt from this rule.

TANK ID	TANK CONTENTS	CAPACITY (gal)	Exempt?
HD-102 A	1-Chloro-1,1-difluoroethane (HCFC-142b)	33,000	Yes, pressurized tank
HD-102 B	142b	33,000	Yes, pressurized tank
HD-102 C	142b	33,000	Yes, pressurized tank
HD-102 D	142b	33,000	Yes, pressurized tank
HD-152 A	vinylidene difluoride (VDF)	28,000	Yes, pressurized tank
HD-152 B	VDF	28,000	Yes, pressurized tank
HD-152 C	VDF	28,000	Yes, pressurized tank
HF-461	COMO6 Storage Tank	658	Yes, <19,813 gallons
HC-456	COMO6 unloading blower for tote	250	Yes, <19,813 gallons
HF-440	COMO3 Storage	12,000	Yes, <19,813 gallons

Table 10-2 Tank Capacities

10.2.4 Standards of Performance for Synthetic Organic Chemicals Manufacturing Industry; Subparts VV, III, NNN, and RRR

These Synthetic Organic Chemical Manufacturing Industry (SOCMI) standards of 40 CFR 60 apply to facilities that manufacture a SOCMI chemical as listed in 60.489, 60.617, 60.667, and 60.707. The Sarsaparilla process may use raw materials or produce as contaminants chemicals which are listed in these rules, but the intermediate and final products, VDF and PVDF respectively, are not listed. Because the process will not produce listed chemicals, it will be exempt from the regulation. Two applicability determinations posted on the USEPA's Clean Air Act (CAA) Applicability Determination Index (ADI) relevant to this determination are included in Appendix N.

10.2.5 Standards of Performance for Volatile Organic Compound Emissions from the Polymer Manufacturing Industry; Subpart DDD

These standards apply to polypropylene, polyethylene, polystyrene, or poly (ethylene terephthalate) manufacture. The proposed equipment will produce VDF and PVDF; therefore, the requirements of this regulation do not apply.

10.2.6 Standards of Performance for Standards of Performance for Volatile Organic Compound (VOC) Emissions From the Synthetic Organic Chemical Manufacturing Industry (SOCMI) Air Oxidation Unit Processes; Subpart III

Subpart III applies to processes that use an air oxidation process to produce one or more chemicals listed on 60.617. This process will not use air oxidation reactors and will not produce any of the listed chemicals.

10.2.7 Standards of Performance for Synthetic Fiber Production Facilities; Subpart HHH

Subpart HHH applies to *solvent-spun synthetic fiber processes*. The process is not a fiber manufacturing process.

10.2.8 Standards of Performance for Synthetic Organic Chemical Manufacturing Industry Wastewater Treatment Plants; Subpart YYY (Proposed Rule)

The only wastewater potentially subject to the requirements of this proposed rule is from the chemical recovery area of the production process. This proposed rule currently applies to organic wastewater compounds at SOCMI production facilities. SOCMI production facilities are delineated in Table 1 of the rule. The Sarsaparilla process utilizes compounds listed in Table 1 of the Rule; however, the facility does not produce these chemicals, so the requirements of the regulation are not applicable.

10.3 Part 61 National Emission Standards for Hazardous Air Pollutants

GA EPD is the designated authority for these National Emission Standards for Hazardous Air Pollutants (NESHAPs) regulations; these regulations are incorporated by reference into Georgia's regulations. The following subsection describes the potentially applicable NESHAPs and the applicable limits.

10.3.1 National Emission Standards for Hazardous Air Pollutant for Benzene Operations; Subparts J, Y, V, BB, and FF

These standards apply to benzene operations as defined in the applicable regulations. Since the proposed operations and Sarsaparilla contain benzene, these regulations may apply. Benzene is not expected to be present in concentrations greater than 10 ppmw anywhere in this process. Thus, there are no applicable requirements under this rule.

10.4 Part 63 National Emission Standards for Hazardous Air Pollutants for Source Categories

GA EPD is the designated authority for these NESHAPs regulations; these regulations are incorporated by reference into Georgia's regulations. The following subsections describe the potentially applicable NESHAPs and the applicable limits.

10.4.1 National Emission Standards for Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry; Subparts F, G, H and I

The proposed processes will not manufacture any of the chemicals listed in 40 CFR 63 Subpart F Table 1 as a primary product (i.e., VDF and PVDF are not in Table 1); therefore, these manufacturing operations are not subject to these standards.

10.4.2 National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins; Subpart U

Subpart U applies to elastomer production; elastomers are defined in the regulation to include the following:

- Butyl Rubber
- Halobutyl Rubber
- Epichlorohydrin Elastomer
- Ethylene Propylene Rubber
- HypalonTM
- Polybutadiene Rubber/Styrene
 Butadiene Rubber by Solution

- Neoprene
- Nitrile Butadiene Rubber
- Nitrile Butadiene Latex
- Polysulfide Rubber
- Styrene Butadiene Latex
- Styrene Butadiene Rubber by Emulsion

Since the Sarsaparilla process will not produce any of these elastomers, the equipment is not subject to this regulation.

10.4.3 National Emission Standards for Pharmaceuticals Production and National Emission Standards for Hazardous Air Pollutants for Pesticide Active Ingredient Production; Subparts GGG and MMM

These regulations apply to pharmaceutical and pesticide production as defined in the regulations. Since the Sarsaparilla process will not produce pharmaceuticals or pesticides, this regulation is not applicable.

10.4.4 National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins, Subpart JJJ

Subpart JJJ applies to *thermoplastic product process units*. Since the Sarsaparilla products are not listed thermoplastic products, the requirements of this regulation are not applicable.

10.4.5 National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline); Subpart EEEE

The applicability of this standard, referred to as the Organic Liquid Distribution (OLD) Maximum Achievable Control Technology (MACT), is determined by the material(s) stored and transferred into or out of the facility. The standard exempts equipment subject to the requirements of another 40 CFR 63 NESHAPs. Since the VDF and PVDF process will be subject to 40 CFR 63 Subpart FFFF (MON), it will be exempt from this regulation.

10.4.6 National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing; Subpart FFFF

This NESHAP requirement, referred to as the Miscellaneous Organic Chemical Manufacturing National Emission Standards for Hazardous Air Pollutant (MON), applies to major sources of HAP that produce a MON chemical. MON chemicals are defined as those with the following Standard Industrial Classification (SIC) or North American Industry Classification System (NAICS) codes: 282, 283, 284, 285, 286, 287, 289, or 386 and NAICS code 325. The production of VDF and PVDF belong to category 2821 Plastics Materials, Synthetic Resins, and Nonvulcanizable Elastomers which calls out fluorohydrocarbon resins.

The Solvay facility, as currently configured, is subject to the MON requirements. Specifically, the KetaSpire/NovaSpire, Xydar and Sulfone production processes are subject to MON and the facility is a major source of HAP. The details related to MON for the existing equipment are detailed in the previous regulatory analysis.

The Sarsaparilla production process will use 142b as a primary raw material and produces organic halogens as well as *hydrogen halide and halogen HAP, e.g.,* HF and HCl. The miscellaneous organic chemical manufacturing process unit (MCPU) is not an affected source or part of an affected source under another subpart of this Part 63 and is not a batch operation within a chemical manufacturing process unit (CMPU), as identified in §63.100(j)(4). Therefore, the Sarsaparilla process is subject to MON.

The Sarsaparilla process contains the following categories of sources that may be regulated by MON:

- Continuous process vents
- Batch process vents
- Process vents that emit hydrogen halide and halogen HAP or HAP metals
- Storage tanks
- Equipment leaks
- Wastewater
- Transfer racks
- Heat exchange systems

Transfer racks regulated by MON are limited to those that are, "...used to fill tank trucks and/or rail cars with organic liquids that contain one or more of the organic HAP." The proposed equipment does include a system for loading VDF for transport, but it does not contain any HAP; thus, it is exempt.

The definition of heat exchange system is contained in 63.101 and is quoted below for reference:

 Heat exchange system means any cooling tower system or once-through cooling water system (e.g., river or pond water). A heat exchange system can include more TRC Environmental Corporation | Solvay Specialty Polymers

 Air Permit Application REDACTED COPY

than one heat exchanger and can include an entire recirculating or once-through cooling system.

The proposed process does include heat exchange systems. Heat exchange systems that contact materials listed in Table 4 of Subpart F at a level above 5 percent by weight are applicable to the standard. The Sarsaparilla process does not contain any of the materials in Table 4 at concentration above 5 percent by weight in the process.

The MON regulations provide different levels of applicability and control for new versus existing sources. A *new affected source* is described in the rule by the following paragraphs in 63.2440:

- Each affected source defined in paragraph (b) of this section for which you commenced construction or reconstruction after April 4, 2002, and you meet the applicability criteria at the time you commenced construction or reconstruction.
- Each dedicated MCPU that has the potential to emit 10 tons per year (tpy) of any one HAP or 25 tpy of combined HAP, and you commenced construction or reconstruction of the MCPU after April 4, 2002. For the purposes of this paragraph, an MCPU is an affected source in the definition of the term "reconstruction" in §63.2.

The affected source for this rule is delineated as, "...the facility-wide collection of MCPU and heat exchange systems, wastewater, and waste management units that are associated with manufacturing materials described in §63.2435(b)(1)." Since the Sarsaparilla process will be part of the facility-wide collection of MCPU and does not have emissions of HAP that exceed 10/25 tpy thresholds, it is not considered a new source under MON.

Continuous Process Vent

A continuous process vent is the point of discharge of an operation from continuous operation that is not a batch operation, storage tank, surge control vessel, wastewater equipment, or equipment leak. Emissions for vents that are less than or equal to 0.005 weight percent (50 ppmw) total HAP are not continuous process vents. There is only one vent (HR-305) that meet these criteria, and it is routed to the thermal oxidizer. (Note that Section 8 contains a description of an alternate operating scenario where emissions from HT-305 are emitted without abatement. This vent is not a continuous process vent because it does not contain HAP.) TRE calculations for the two continuous process vents indicate that these are Group 1 continuous process vents; Solvay has designated these as Group 1. Group 1 continuous process vents require control. Solvay will route these emissions to a thermal oxidizer to achieve the required 98% control or 20 ppmv organic HAP or TOC outlet concentration. The thermal oxidizer is followed by a scrubber to control halogens by >99%. The vent stream is also considered a halogenated group 1 vent

stream because the emissions of halogen atoms exceed 0.45 kg/hr. The specific requirements for these are as follows:

- Use a halogen reduction device after the combustion device to reduce emissions of hydrogen halide and halogen HAP by ≥99 percent by weight, or to ≤0.45 kg/hr, or to ≤20 ppmv; or
 - Use a halogen reduction device before the combustion device to reduce the halogen atom mass emission rate to ≤0.45 kg/hr or to a concentration ≤20 ppmv.

The proposed design for the exhaust system from the process will meet one or more of these requirements.

Batch Process Vents

Batch process vents are vents from one or more unit operations within a process such as vents on condensers used for product recovery, reactors, filters, centrifuges, and process tanks. The following are not batch process vents for the purposes of this subpart:

- Continuous process vents;
- Bottoms receivers;
- Surge control vessels;
- Vents on storage tanks, wastewater emission sources, or pieces of equipment subject to the emission limits and work practice standards in Tables 4, 6, and 7 to this subpart;
- Emission streams from emission episodes that are undiluted and uncontrolled containing less than 50 ppmv HAP are not part of any batch process vent. A vent from a unit operation, or a vent from multiple unit operations that are manifolded together, from which total uncontrolled HAP emissions are less than 200 lb/yr is not a batch process vent; emissions for all emission episodes associated with the unit operation(s) must be included in the determination of the total mass emitted.

The proposed process does not have any batch process vents because the vents are either categorized as another type of regulated source (*e.g.*, CPVs, storage tanks, surge control vessels, and bottoms receivers) or the concentration of HAP is less than 50 ppmv.

Process Vents That Emit Hydrogen Halide and Halogen HAP or HAP Metals

Subpart FFFF defines hydrogen halide and halogen HAP as hydrogen chloride, hydrogen fluoride, and chlorine. Process vents that emit hydrogen halide and halogen HAP include batch and continuous process vents; storage tanks and equipment leaks are specifically exempted from the definitions of batch and continuous process vents. Since the collective uncontrolled hydrogen halide and halogen HAP emissions from the Sarsaparilla process vents will be greater than or equal to 1,000 pounds per year (lb/yr) prior to control, the requirements of Table 3 in Subpart FFFF apply. Table 3 provides for three control options as follows:

- Reduce hydrogen halide and halogen HAP by 99 percent
- Meet an outlet hydrogen halide and halogen HAP concentration of less than or equal to 20 ppmv
- Reduce the halogen atom mass emission rate from the sum of all batch process vents and each individual continuous process vent to ≤0.45 kg/hr

The halogenated vents from the VDF and PVDF portions of the process are vented to the thermal oxidizers which create hydrogen halide HAP. The scrubber will reduce HAP to levels required in the rule. The PVDF portion of the process associated with washing and drying does not emit hydrogen halide and halogen HAP.

HAP metals are regulated from new sources and include the metal portion of the following compounds: antimony, arsenic, beryllium, cadmium compounds, chromium, cobalt, lead, manganese, mercury, nickel, and selenium. The Sarsaparilla process does not use, produce, or generate HAP metals so emissions are expected to be less than 150 lb/yr. The requirements of this section are not applicable to sources with less than 150 lb/yr of HAP metals. Further, the HAP metals requirements only apply to new sources. The Sarsaparilla process is considered an existing process as described previously, thus the requirements for HAP metals do not apply.

Storage Tanks

Storage tank for purposes of this rules includes tanks and vessels that are used to store liquids that contain organic HAP and/or hydrogen halide and halogen HAP. The following are not considered storage tanks for the purposes of this subpart:

- 1. Vessels permanently attached to motor vehicles such as trucks, railcars, barges, or ships;
- 2. Pressure vessels designed to operate in excess of 204.9 kilopascals and without emissions to the atmosphere;
- 3. Vessels storing organic liquids that contain HAP only as impurities;
- 4. Wastewater storage tanks;
- 5. Bottoms receivers;
- 6. Surge control vessels; and
- 7. Process tanks.

Under Subpart FFFF, storage tanks require control if they are designated as Group 1. Group 2 tanks do not require control. Group 1 tanks are defined in the rule as a tank that meets the following criteria:

a capacity greater than or equal to 10,000 gallons; and

 stores a material that has a maximum true vapor pressure of total HAP greater than or equal to 6.9 kilopascals (kPa) at an existing source or greater than or equal to 0.69 kPa at a new source.

The only vessels used in the Sarsaparilla process that are considered storage tanks and exceed 10,000 gallons are the COMO3 and HCl storage tanks. The three HCl storage tanks have a capacity 40,000 gallons each. The maximum true vapor pressure for these tanks is 53 kPa. Solvay will use a scrubber to reduce HAP emissions by ≥95 percent by weight or ≤20 ppmv of hydrogen halide and halogen HAP. The COMO3 storage tank has a maximum true vapor pressure of 0.5 kPa; thus, it is considered a Group 2 storage vessel and does not require control.

Surge Control Vessels And Bottoms Receivers

Although surge control vessels and bottoms receivers are excluded from the definition of storage tanks, they are required to meet similar requirements. There are four surge control vessels that exceed a capacity of 10,000 gallons as follows:

- HD-878-Off Gas Buffer Tank,
- HF-450 COMO3 Batching Tank1
- HF-452 COMO3 Batching Tank2
- HF-460 COMO7 Prep Tank1.

The maximum true vapor pressure for each of these tanks is less than 0.02 kPa; thus, these are considered group 2 and are not required to have any emission control and do have any applicable work practice requirements.

Equipment Leaks

The equipment leak requirements contained in Table 6 of Subpart FFFF apply to equipment that either contains or contacts a fluid (liquid or gas) that is at least 5 percent by weight of total organic HAP. Organic HAP in this process is expected to exceed 5 percent in certain areas, thus the requirements apply. Where organic HAP exceeds 5 percent by weight, Solvay will implement one of the leak detection and repair program (LDAR) options in Table 6 of the MON rule. The existing Solvay facility already has an LDAR program for MON compliance and the permit contains the necessary LDAR requirements.

Wastewater

Wastewaters potentially subject to requirements of Subpart FFFF are those that meet one of the following two criteria:

 annual average concentration of compounds in Tables 8 and 9 to Subpart FFFF of at least 5 ppmw and has an annual average flow rate of 0.02 liters per minute or greater; or annual average concentration of compounds in Tables 8 and 9 to this Subpart of at least 10,000 ppmw at any flow rate

The Sarsaparilla process is not expected to generate any of the compounds listed in Table 8 or 9 at a concentration above 5 ppmw in wastewater, thus the process does not generate wastewater subject to the provisions of this rule.

This application also serves to satisfy the notification requirements under

 Subpart A, §63.9(b) and 63.5 Table 11 of Subpart FFFF: Pre-compliance Report 63.2520(c)

10.4.7 National Emission Standards for Hazardous Air Pollutants: Industrial and Commercial Boilers; Subpart DDDDD

This standard applies to all facilities that own or operate an industrial, commercial, or institutional boiler or process heater that is located at a major source of HAP. The Solvay facility is currently a major source of HAP and is and will continue to be subject to this subpart. The Sarsaparilla process includes several combustion devices as follows: one gas-fired boiler, three gas-fired furnaces, and two thermal oxidizers. The thermal oxidizers are not subject to this rule because they do not meet the definition of boiler or process heater based on review of their proposed design. The boiler is subject to the regulation, but there are not any emission limits because it is a gas-1 boiler. The furnaces are process heaters as defined under this rule; thus they are subject. As with the gas-fired boilers, there are no emission limits because these units are in the gas-1 category. Note that the process gases being pyrolyzed in the furnace do not come into contact with the combustion gases and are subject to the requirements of another MACT, 40 CFR 63 Subpart FFFF. The applicable Boiler MACT requirements for the new boiler and combustion emissions from furnaces are confined to a requirement to conduct periodic tune-ups.

10.4.8 National Emission Standards for Hazardous Air Pollutants: Hydrochloric Acid Production - Subpart NNNN

This standard applies to facilities that produce a liquid HCl product at a concentration of 30 weight percent or greater during its normal operations. Solvay will produce a 30% or greater by weight solution as part of the VDF process. The solution will initially be neutralized on site using lime. The resulting neutralized material is filtered to remove solids which will be disposed of in a landfill. The liquid portion will be discharged to the local POTW. Because the initial design does not include production of an HCl product, this regulation does not apply to initial operations.

Solvay requests that the permit allow for an operating scenario where the HCl solution is sold as a commercial project. Under this operating scenario, the 'HCl production facility' is subject to the requirements of Subpart NNNN. As such, Solvay requests that GA EPD add the applicable requirements for this alternate operating scenario to the permit. The rule applies to the following:

- Process vents
- Storage tanks
- Transfer operations
- Equipment leaks
- Wastewater operations

Per the rule. "there are no emission limitations or other requirements in this subpart that apply to HCl wastewater operations." The wastewater operations are part of the affected sources nonetheless. Because this operation will be constructed after September 18, 2001, it is considered a new source. Solvay will operate process vents, tanks, transfer operations, and equipment subject to leak requirements potentially subject to emission limits and work practice standards. Table 1 of the rule specifies the emission control options for compliance with the rule. Solvay will operate caustic scrubbers on the process vents, storage tanks, and transfer operations to reduce emissions below the requirements specified in Table 1. The applicable compliance options are listed as follows:

HCl process vent	a. Reduce HCl emissions by 99.4 percent or greater or achieve an outlet concentration of 12 ppm by volume or less; and		
	b. Reduce Cl ₂ emissions by 99.8 percent or greater or achieve an outlet concentration of 20 ppm by volume or less.		
HCl storage tank	Reduce HCl emissions by 99.9 percent or greater or achieve an outlet concentration of 12 ppm by volume or less.		
HCl transfer operation	Reduce HCl emissions by 99 percent or greater or achieve an outlet concentration of 120 ppm by volume or less.		

The applicable monitoring requirements for caustic scrubbers are scrubber inlet liquid or recirculating liquid flow rate and pH. Solvay will establish the operating limits based on performance testing after startup. Solvay will also develop an LDAR plan that describes the measures put in place to detect and repair leaks from equipment (e.g., pumps, compressors, valves, connectors, etc.) that contacts liquid HCl streams with a concentration of greater than 30% and vapor streams with a concentration greater than 5%.

10.5 Part 64 Compliance Assurance Monitoring

USEPA Regulations 40 CFR 64.2 and 40 CFR 64.5(a) require that certain sources prepare and submit a compliance assurance monitoring (CAM) plan.

Whether or not a CAM plan is required depends on the pre-control emission rates of pollutants as well as the applicability of an emission limit. The first criterion is the applicability of an emission limitation such as a PSD avoidance limit or a federally-enforceable state regulation. The second criterion is that a control device must be used to meet this limit and the uncontrolled emission rate must be greater than the Title V applicability thresholds.

The proposed application contains regulatory limitations from state and federal standards and requests for limitations on certain sources to avoid applicability of PSD. Considering the fact that any applicable limits under post-1990 MACT and NSPS are specifically exempt from CAM and that control devices will be complaint with post-1990 MACT standards, a CAM plan is not required for this project.

10.6 Ambient Impact Analysis for Air Toxics

Operation of the Sarsaparilla process will result in emissions of several substances that must be evaluated following the Georgia Department of Natural Resources' (GA DNR's) *Guidelines for Ambient Impact Assessment of Toxic Air Pollutant Emissions, June 21, 1998.* An analysis of these emissions has been prepared and is included in Section 11.

11.0 Air Dispersion Modeling Analysis

Solvay Specialty Polymers (Solvay) is proposing changes at its Augusta Georgia facility (see Figure 1). These changes will result in the installation of new processes. The changes have triggered the need for air pollution control permits. Part of the permitting process includes an evaluation of emissions of air toxic substances listed by the State of Georgia's in its air toxic regulations. Emissions of 11 air toxic substances have emission levels that trigger a requirement for further evaluation. In Georgia, further analysis involves the use of a dispersion model to predict the off-site impact of the emissions. The analysis must follow procedures defined in the Georgia Environmental Protection Division's (GA EPD's) document; "Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions" dated May 2017. This document presents the air quality analysis of emissions of the 11 substances following the GA EPD's required procedures.

Figure 1: Site Location

11.1 Ambient Air Impact Analysis Methodology

Air quality impact assessments (AQIAs) are performed using dispersion modeling techniques in accordance with the EPA's Guideline on Air Quality Models (codified as Appendix W to 40 CFR Part 51, hereafter referred to as the Guideline).

11.1.1 Dispersion Model Selection and Application

The rationale for the dispersion modeling approach is based on EPA and Georgia guidelines, considerations of the local terrain, and the emission unit characteristics. AERMOD is currently the preferred dispersion model recommended by the Guideline for complex source configurations and emission units subject to exhaust plume downwash.

11.1.2 Modeling Procedures

AERMOD has been applied to calculate worst-case ground level concentrations using the regulatory default options in addition to the options and data discussed in this section. As indicated earlier, 11 substances have calculated (calculations presented elsewhere in this application) emissions that exceed Georgia's Minimum Emission Rate (MER) threshold and are subject to further analysis. These substances are as follows:


- Acetone
- Benzene
- Hydrogen chloride
- Hydroquinone
- _ Methanol
- Monochlorobenzne
- Nickel
- Hydrogen Flouride
- ____ Flourine
- _ Chlorine
- Acrylic Acid

TRC used the default AERMOD options for dispersion that depend on local meteorological data, regional upper air data, and the local physical characteristics of land use surrounding the primary meteorological site. The area surrounding the facility is a combination of open forested and unforested land, limited commercial use and residential land use. As such the land use would not meet criteria for "urban" settings, so the default rural land use was assumed in the model.

Meteorological data from the Augusta Daniel Field surface and GA/Peachtree City-Falcon Field, upper air stations for the years 2016-2020 were used. This data set is recommended by the GA EPD for use for facilities located in Richmond County. The effects of building downwash were considered through use of the BPIP Prime algorithm for determining wind direction dependent building dimensions. No stacks at the facility meet the regulatory definition of Good Engineering Practice stack height.

Receptors were spaced at 25-meter intervals around the facility boundary and at 50-meter intervals away from the boundary (see Figure 2). Maximum predicted impacts of all substances were found at the interior boundary of the receptor network. Receptor, building and stack base elevations were obtained from a National Elevation Dataset (NED) file and the USEPA's AERMAP terrain processor algorithm.

Figure 2. Receptor Layout

11.2 Modeled Emission Sources and Emission Rates

Tables 11-1 and 11-2 shows the stack parameters for the emissions sources included in the analysis. All coordinates listed are in NAD 83 Datum. Table 11-3 shows the calculated emissions for the project for those substances found to have emissions exceeding the corresponding Georgia defined MERs.

Table 11-1 Vertical Exhaust Stacks

Stack	X (m)	Y (m)	Hgt (m)	Temp (K)	m/s	Diam (m)
SA6	405790.6	3692684.3	24.39	293	3.35	0.203
SA7	405790.6	3692682.3	24.39	293	5.09	0.076
SA8	405790.6	3692680.3	24.39	293	10.23	0.076
SA9	405790.6	3692678.3	15.24	293	1.06	0.051
SH1	405790.6	3692676.3	24.39	293	1.8	0.076
SH2	405790.6	3692674.3	24.39	293	5.06	0.152
SH3	405790.6	3692672.3	24.39	293	1.8	0.076
SD4	405790.6	3692670.3	24.39	293	10.23	0.076
SD8	405754.9	3692677	3.05	293	0.84	0.102
SD11	405738.7	3692682.1	15.24	343	1.43	0.152
SD22	405742	3692680	15.24	343	1.43	0.152
SD27	405800.3	3692625.9	5.49	293	11.6	0.203
SD28	405807.4	3692626.5	3.66	293	4.7	0.051
OXS5	405792.4	3692632.5	24.39	293	1.6	0.076
OXS8	405787	3692628.3	21.34	293	1.6	0.076
FS6	405791.5	3692628.9	24.39	293	1.6	0.076
FS8	405792.4	3692625.9	21.34	293	1.6	0.076
FS9	405870.1	3692197.1	30.8	313	1.03	0.457
FH5	405840.2	3692181.2	3.66	308	0.51	0.152
SA6	406056.4	3692576.7	6.1	302	0.014	0.356
SA7	406129.3	3692540.9	6.1	277	0.003	0.152
SA8	406085.9	3692562.8	6.1	302	0.009	0.102
SA9	406054.3	3692552.7	3.05	293	0.03	0.102
TOX1	405837	3692142.8	48.78	311	11.02	0.3303
TOX2	405835.1	3692154.9	48.78	311	11.02	0.3303
X1X2SC	405868.7	3692083.1	35.37	313	4.55	0.305
L1DRY	405833.2	3692020.7	35.37	373	14.21	0.915
L2DRY	405833.2	3692001.1	35.37	373	14.21	0.915
SLWASH1	405825.8	3692056.1	35.37	313	4.87	0.152
SLWASH2	405829.5	3692043.1	35.37	313	4.87	0.152
WWSCR	405953.6	3692070.3	24.39	293	0.26	0.192

	x	Y	Hgt	Temp		Diam
Stack	(m)	(m)	(m)	(K)	m/s	(m)
LE114	405978.4	3692585.1	13.72	283	0.001	0.051
LE208	405992.4	3692629.1	17.99	283	0.001	0.051
LE210	405985.5	3692626.2	9.15	283	0.015	0.038
LE309	406029.4	3692634.4	18.29	283	0.03	0.025
LE330	406034.2	3692634.5	12.2	283	0.03	0.038
LE405	406023.2	3692625.3	15.24	283	0.064	0.038
LE430	406032.8	3692626.1	1.52	313	0.137	0.025
LE467	405994.7	3692631.5	16.77	283	0.021	0.038
LD425	406041.5	3692626.3	12.2	313	0.146	0.051
LD435	406041.5	3692632	12.2	313	0.146	0.051
LE680	406001.1	3692649.6	21.34	283	0.006	0.076
LT750	406100	3692652.3	27.44	294.1	0.122	0.457
LF1601	406081.4	3692634.1	13.72	313	0.634	0.102
LE448	405988.6	3692619.6	18.29	283	0.021	0.038
LE477	405982.1	3692638.3	21.34	283	0.957	0.038
LE576	405986.1	3692659.2	0.1	283	0.012	0.076
LE679	406027.4	3692665.5	21.34	283	0.659	0.076
LE368	406047.1	3692655.7	19.82	283	0.244	0.051
LT103	405962.4	3692610.6	10.37	294.1	0.201	0.102

Table 11-2 Horizontal Exhaust Stacks

Stack	Acetone	Hydroquinone	Hydrogen Chloride	Monchloro benzene	Methanol	Nickel	Benzene				
SA1	8.51	0	0	0	0	0	0				
SA2	4.16	0	0	0	0	0	0				
SA3	1.01	0	0	0	0	0	0				
SA4	0.25	0	0	0	0	0	0				
SA5	0.13	0	0	0	0	0	0				
SA6	0.25	0	0	0	0	0	0				
SA7	8.51	0	0	0	0	0	0				
SA8	0.16	0	0	0	0	0	0				
SA9	0.16	0	0	0	0	0	0				
SH1	0	0	0.00252	0	0	0	0				
SH2	0	0	0	0	0	0	0				
SH3	0	0	0	0	0	0	0				
SD4	0	8.61E-03	0	0	0	0	0				
SD8	0	0	0	0	0	0	0				
SD11	0	1.64E-04	0	0	0	0	0				
SD22	0	1.64E-04	0	0	0	0	0				
SD27	0	1.64E-04	0	0	0	0	0				
SD28	0	1.64E-04	0	0	0	0	0				
OXS5	0	6.30E-04	0	0	0	0	0				
OXS8	0	6.30E-04	0	0	0	0	0				
FS6	0	0	0.0034	2.02E-05	0.0063	0	2.94E-04				
FS8	0	0	0	0	0.208	0	0				
FS9	0	0	0	0	0	0	3.78E-06				
FH5	0	0	0	0	0	5.29E-04	0				
LE114	0	0	0	0.0275	0	0	0				
LE208	0	0	0	0.0101	0	0	0				
LE210	0	0	0	0.0003	0	0	0				
LE309	0	0	0	0.0499	0	0	0				
LE330	0	0	0	0.0097	0	0	0				
LE405	0	0	0	0.0038	0	0	0				
LE430	0	0	0	0.0075	0	0	0				
LE467	0	0	0	0.0299	0	0	0				
LD435	0	0	0	0.0342	0	0	0				
LE680	0	0	0	0.1431	0	0	0				
LT750	0	0.063	1.0	0.0195	0	0	0				
LF1601	0	0	0	0.1590	0	0	0				
LE448	0	0	0	0.0327	0	0	0				
LE477	0	0	0	0.0314	0	0	0				

 Table 11-3

 Emission Rates in Grams per Second

TRC Environmental Corporation | Solvay Specialty Polymers

Air Permit Application **REDACTED COPY**

11-8

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\522403\0000\R5224030000-001 PERMIT APPLICATION-REDACTED COPY.DOCX

Stack	Acetone	Hydroquinone	Hydrogen Chloride	Monchloro benzene	Methanol	Nickel	Benzene
LE576	0	0	0	0.0996	0	0	0
LE679	0	0	0	0.0962	0	0	0
LE368	0	0	0	0.0169	0	0	0

Table 11-3 **Emission Rates in Grams per Second**

Table 11-3 (Continued)

Stack	Hydrogen Chloride	Hydrogen Flouride	Chlorine	Acrylic Acid	Flourine
TOX1	0.00932	0.000932	0.00186	0	0.000932
TOX2	0.00932	0.000932	0.00186	0	0.000932
X1X2SC	0	0	0	0.005556	0
L1DRY	0	0	0	0.04445	0
L2DRY	0	0	0	0.04445	0
SLWASH1	0	0	0	0.00139	0
SLWASH2	0	0	0	0.00139	0
WWSCR	0.0272	0	0	0	0

11.3 **Modeling Results**

A summary of the worst-case initial modeling results for all substances are shown in Table 11-4 for each year of meteorological data. The modeling results in Table 11-4 indicate the facility is predicted to be in compliance with Georgia defined acceptable ambient concentrations.

Substance	2016	2017	2018	2019	2020	Worst Case	AAC
Acetone -24-hr	1270	1349	1467	1561	1475	1561	5700
Acetone -15 min	9152	10613	8641	9571	10285	10613	176200
Benzene Annual	0.005	0.005	0.005	0.005	0.004	0.005	0.13
Chlorobenzene (24-hr)	327	307	335	335	411	411	833
Hydrogen Chloride(Annual)	0.56	0.64	0.51	0.50	0.52	0.64	20
Hydrogen Chloride (15-min)	44.6	40.4	33.4	35.7	39.7	44.6	700
Hydroquinone (24-hr)	2.03	1.98	2.67	2.15	2.02	2.67	4.8
Hydroquinone (15-min)	22.3	19.4	18.6	19.5	20.9	22.3	200
Methanol (Annual)	4.8	5.9	4.6	4.4	4.5	5.9	20000
Methanol (15-min)	668	631	579	655	605	668	32800
Nickel (Annual)	0.008	0.009	0.008	0.008	0.008	0.009	0.794
HF(24-hr)	1.44	1.48	1.62	1.29	1.55	1.62	5.84
HF(15-min)	14.5	14.8	20.5	23.6	17.7	23.6	245

Table 11-4 Air Quality Modeling Results (ug/m³)

TRC Environmental Corporation | Solvay Specialty Polymers Air Permit Application **REDACTED COPY**

\\EMPLOYEES.ROOT.LOCAL\ENV\ECC\GREENVILLE\WPGVL\PJT2\522403\0000\R5224030000-001 PERMIT APPLICATION-REDACTED COPY.DOCX

Substance	2016	2017	2018	2019	2020	Worst Case	AAC
Fluorine (24-hr)	0.013	0.016	0.013	0.015	0.016	0.016	0.476
Fluorine (15-min)	0.14	0.11	0.11	0.12	0.12	0.14	155.4
Chlorine(24-hr)	0.026	0.031	0.026	0.03	0.033	0.033	3.6
Chlorine (15-min)	0.28	0.22	0.21	0.24	0.22	0.28	300
COMO3 (annual)	0.22	0.23	0.28	0.25	0.21	0.28	1

Table 11-4 Air Quality Modeling Results (ug/m³)

Appendix A1 Claim to Confidentiality⁶³

STATE OF Georgia

COUNTY OF Richmond

AFFIDAVIT OF Alain DeGreef IN SUPPORT OF CLAIMS THAT INFORMATION IS PROTECTED UNDER GEORGIA LAW FROM DISCLOSURE TO THE PUBLIC

PERSONALLY APPEARED before the undersigned officer, authorized to administer oaths, Alain DeGreef, Affiant who, first being duly sworn, testifies as follows:

1. My name is Alain DeGreef. I am of the age of majority and am competent in all respects to give this Affidavit. My testimony herein is based on personal knowledge and upon documents maintained in the files of the Solvay.

2. Solvay is a corporation with operations in Augusta, Georgia. I am the Site Manager of Solvay with primary responsibility for [_______________________]. In my role as Site Manager, I am authorized to provide this Affidavit on behalf of the Solvay.

3. On February 28, 2024, Solvay submitted a "Redacted Copy" and a "Protected Copy" of an air permit application (referred to hereinafter as the "Submittal") to the Air Branch of the Georgia Environmental Protection Division ("EPD") in compliance with EPD's Procedures for Submitting Information Pursuant to a Claim that Information in the Submittal is Protected Under Georgia Law from Disclosure to the Public. I affirmatively declare that information contained in the Submittal to EPD is protected under the Georgia Open Records Act, O.C.G.A. § 50-18-70, *et seq.*, from disclosure to the public and that the Redacted Copy is submitted to EPD for disclosure to the public as is. Support for this declaration, including citation to the specific provisions of Georgia law, is included below.

[CLAIM UNDER THE TRADE SECRETS PROVISION OF THE GEORGIA OPEN RECORDS ACT]

4. The Georgia Open Records Act provides in pertinent part that –

(a) Public disclosure shall not be required for records that are:

(34) Any trade secrets obtained from a person or business entity that are required by law, regulation, bid, or request for proposal to be submitted to an agency. An entity submitting records containing trade secrets that wishes to keep such records confidential under this paragraph shall submit and attach to the records an affidavit affirmatively declaring that specific information in the records constitute trade secrets pursuant to Article 27 of Chapter 1 of Title 10.

O.C.G.A. § 50-18-72(a)(34).

5. The Georgia Trade Secrets Act, O.C.G.A. § 10-1-760, *et seq.*, provides that a -

(4) 'Trade secret' means information, without regard to form, including, but not limited to, technical or nontechnical data, a formula, a pattern, a compilation, a program, a device, a method, a technique, a drawing, a process, financial data, financial plans, product plans, or a list of actual or potential customers or suppliers which is not commonly known by or available to the public and which information:

(A) Derives economic value, actual or potential, from not being generally known to, and not being readily ascertainable by proper means by, other persons who can obtain economic value from its disclosure or use; and

(B) Is the subject of efforts that are reasonable under the circumstances to maintain its secrecy.

O.C.G.A. § 10-1-761(4).

6. The Submittal was required to be submitted to EPD pursuant to 391-3-1-.02.

7. On behalf of the Solvay, I affirmatively declare that the identity of the products, certain raw materials, process descriptions, flow diagrams, and calculations in the Submittal constitute trade secrets pursuant to the Georgia Trade Secrets Act as shown herein.

8. The IDENTITY OF THE PRODUCT AND THE METHOD BY WHICH IT WILL BE MANUFACTURED constitute trade secrets, because THEPRODUCT PLAN IS CONFIDENTIAL AND THE PROCESS BY WHICH THE PRODUCT WILL BE MADE HAS BEEN DEVELOPED BY SOLVAY, IS UNKNOWN TO THE PUBLIC, AND WILL PROVIDE SIGNIFICANT ECONOMIC BENEFIT TO SOLVAY. SOLVAY HAS ENGAGED IN REASONABLE EFFORTS TO MAINTAIN THE SECRECY OF THIS INFORMATION. IF THE INFORMATION WERE DISCOVERED BY A

COMPETITOR, SOLVAY'S BUSINEES WOULD BE HAMPERED SIGNIFICANTLY

9. Solvay understands that receipt by EPD of this Affidavit and the Submittal does not mean that EPD agrees or has made a determination that the information identified in this Affidavit is protected under the Georgia Open Records Act from disclosure to the public. However, for claims made in this Affidavit that information in the Submittal constitute trade secrets pursuant to the Georgia Trade Secrets Act, I understand that Section 50-18-72(a)(34) of the Georgia Open Records Act proscribes a procedure for producing such information in response to a request under that Act.

FURTHER Affiant saith not.

Alain DeGreef Site Manager Solvay 706-790-3100 Alain.DeGreef@synesqo.com

Subscribed and sworn to before me this $\frac{28}{28}$ day of <u>February</u>, 2024.

han matuce

Shannon Matlock

My Commission expires:

2/10/2025

Claim to Confidentiality Substantiation of Claim to Confidentiality for Redacted Information Reference numbers: [1] through [78]

Pursuant to O.C.G.A § 50-18-72(b)(1), the redacted information constitutes trade secrets of a privileged or confidential nature and is therefore not applicable to O.C.G.A. § 50-18-72(b)(1) et seq. Additionally, pursuant to O.C.G.A. § 12-9-19 and Rules 391-3-1- 08, the redacted information is related to secret processes, devices or methods of manufacture or production and shall therefore be kept confidential by the Georgia Environmental Protection Division (GA EPD). Solvay Specialty Polymers USA, LLC (Solvay) requests that each separate piece of such information be retained as confidential by the GA EPD until such time Solvay makes such separate piece of information public knowledge.

The trade secret information is a trade secret as defined in O.C.G.A. § 10-1-761(4) because it has economic value to Solvay from not being generally known to, and not being readily ascertainable by proper means by, other persons who can obtain economic benefit from its disclosure or use, and because it is the subject of efforts that are reasonable under the circumstances to maintain its secrecy. If the redacted information were to be obtained by a competitor, person or entity capable of operating a similar business, it would be detrimental to Solvay's business position on the world market. Therefore, Solvay requests such information be withheld from the public by GA EPD.

Solvay asserts that any information that has been marked confidential or redacted herein as trade secrets, proprietary information, privileged information or company property has never been previously made available to the public by publication, dissemination or other method of distribution.

Solvay has not in any way waived any rights to its claim of confidentiality for the redacted information. If GA EPD is not satisfied that the enclosed information requires confidential treatment, Solvay requests a meeting to substantiate its claims of confidentiality.

Appendix B Amodel Process Flow Diagram⁶⁴

Appendix C Amodel Emission Calculations⁶⁵

POTENTIAL TO EMIT (PTE) SUMMARY

										Capacity (N	1Mlbs / year)
tack Code	Control Source Code	Source Code	Pollutant Emitted	Compound	Uncontrolled Emissions	Units	Emissions Factor Reference	Operating Hours / Year	Control Efficiency	TPY Emitted (PTE)	2001 estimat TPY
A1		KF-150	PM	TA / IPA / AA			Eng. Calcs	8760	N/A	0.03	0.03
			PM ₁₀				Eng. Calcs	8760	N/A	0.03	0.03
- A1A	C101	KM101	PM		945	lb/hr	Eng. Calcs	8760	99.90%	-	-
			PM ₁₀		472.5	lb/hr	Eng. Calcs	8760	99.80%	-	-
- A1B	C111	KM111	PM		945	lb/hr	Eng. Calcs	8760	99.90%	-	-
			PM ₁₀		472.5	lb/hr	Eng. Calcs	8760	99.80%	-	-
- A1C	C121	KM121	PM	AA	386.4	lb/hr	Eng. Calcs	8760	99.90%	-	1.69
	ROUTED TO A1		PM ₁₀		193.2	lb/hr	Eng. Calcs	8760	99.80%	S	1.69
- A1D	C226	KM226	PM		386.4	lb/hr	Eng. Calcs	8760	99.90%		-
REM	OVED FROM SE	RVICE	PM ₁₀		193.2	lb/hr	Eng. Calcs	8760	99.80%	1. S. C. C. S. C. S.	-
A1F	C201	KM201	PM		0.51	lb/hr	Eng. Calcs	8760	99.90%	0.0022	0.00
			PM ₁₀		0.26	lb/hr	Eng. Calcs	8760	99.80%	0.0022	0.00
A1G	C211	KM211	PM		0.20	lb/hr	Eng. Calcs	8760	99.90%	0.0009	0.00
			PM ₁₀		0.10	lb/hr	Eng. Calcs	8760	99.80%	0.0009	0.00
A1H	C221	KM221	PM	AA	0.07	lb/hr	Eng. Calcs	8760	99.90%	0.0003	0.00
			PM ₁₀		0.03	lb/hr	Eng. Calcs	8760	99.80%	0.0003	0.00
A2	C143	KF143	VOC	HMDA	1.20	lb/hr	Eng. Calcs	47	99.00%	0.0003	0.00
A3	C142	KF142	VOC	HMDA	0.02	lb/hr	Eng. Calcs	8760	99.06%	0.0008	0.00
A5	C227	KM227	PM		27.15	lb/hr	Eng. Calcs	8760	99.90%		0.12
REM	OVED FROM SE	RVICE	PM ₁₀		13.58	lb/hr	Eng. Calcs	8760	99.80%		0.12
A6			VOC	HMDA	615.38	lb/hr	Eng. Calcs	8760	N/A	2.54	1.31
			VOC		0.18	lb/hr	Eng. Calcs	8760	N/A	0.07	0.04
			VOC		0.0005	lb/hr	Eng. Calcs	8760	N/A	0.0002	0.00
	C610	KD610-1	VOC	HMDA	553.00	lb/hr	Eng. Calcs	8760	99.75%	-	-
	C603B&C	KC603B&C	VOC	HMDA	1.38	lb/hr	Eng. Calcs	8760	99.07%	-	-
	C601B	KC601B	VOC	HMDA	55.00	lb/hr	Eng. Calcs	8760	99.07%	-	-
	C601A	KC601A	VOC	HMDA	6.00	lb/hr	Eng. Calcs	8760	99.07%	-	-
					0.18	lb/hr	Eng. Calcs	747	66.67%	_	-
					0.0005	lb/hr	Eng. Calcs	747	66.67%	-	-
A6A		KF690	VOC	HMDA	1.13E-05	lb/hr	Eng. Calcs	8760	N/A	4.96E-05	New Sec.
A6B		KC692	PM	PPA	0.72	lb/hr	Eng. Calcs	8760	99.00%	0.03	Contraction of the second
		Sector Sector	PM ₁₀	PPA	0.36	lb/hr	Eng. Calcs	8760	98.00%	0.03	10750-00 - 0700
A7	C104	KM104	PM		18.51	lb/hr	Eng. Calcs	7,392	99.90%	0.07	0.07
			PM ₁₀		9.25	lb/hr	Eng. Calcs	7,392	99.80%	0.07	0.07
A8	C633	KF633	VOC	HMDA	292.00	lb/hr	Eng. Calcs	8760	99.86%	1.79	1.02
A9	C703	KM703	PM	PPA	12.49	lb/hr	Eng. Calcs	8760	99.90%	0.05	2.28
			PM ₁₀		6.24	lb/hr	Eng. Calcs	8760	99.80%	0.05	2.28
A10	C728	KM728	PM	PPA	0.40	lb/hr	Eng. Calcs	8760	100.00%	1.85E-05	0.01
			PM ₁₀		0.20	lb/hr	Eng. Calcs	8760	100.00%	1.85E-05	0.01
A11	C733	KM733	PM	PPA	1.53	lb/hr	Eng. Calcs	8760	100.00%	5.20E-05	0.02
			PM ₁₀		0.76	lb/hr	Eng. Calcs	8760	100.00%	5.20E-05	0.02
A12		KF801	VOC		0.0030	lb/hr	Eng. Calcs	8760	N/A	0.013	0.0011
A13		KF802	VOC		0.0053	lb/hr	Eng. Calcs	8760	N/A	0.0234	0.0101
					0.0002	lb/hr	Eng. Calcs	8760	N/A	0.0009	0.0101
A14	Sec. 1997	KF803	VOC		0.00002	lb/hr	Eng. Calcs	8760	N/A	-	0.0004

	Control	Source	Pollutant		Uncontrolled		Emissions Factor	Operating	Control	Capacity (N	/Mlbs / year)
atack Code	Source Code	Code	Emitted	Compound	Emissions	Units	Reference	Hours / Year	Efficiency	TPY Emitted (PTE)	2001 estimate
A15	C807	KB807	VOC		835.00	lb/hr	Eng. Calcs	8760	95%	2.6303	3.4762
			СО		84	lb/MMscf	AP-42	8760	N/A	0.3093	0.3339
			SOx		0.6	lb/MMscf	AP-42	8760	N/A	0.0022	0.0024
			PM		7.6	lb/MMscf	AP-42	8760	N/A	0.0280	0.0304
			PM ₁₀		5.7	lb/MMscf	AP-42	8760	N/A	0.0210	0.0227
			VOC		2.3	lb/MMscf	AP-42	8760	N/A	0.0203	0.0219
					5.5	lb/MMscf	AP-42	8760	N/A	0.0085	0.0093
			NOx		100	lb/MMscf	AP-42	8760	N/A	0.3682	0.3971
A16		KD908	VOC		0.1607	lb/hr	Eng. Calcs	8760	N/A	0.70	2.53
A17		KB901			0.05	lb/hr	Eng. Calcs	8760	N/A	0.19	0.2
			NOx		1.63	lb/hr	Manufacturer	8760	N/A	7.13	7.13
			SOx		0.6	lb/MMscf	AP-42	8760	N/A	1.66	1.53
			СО		84	lb/MMscf	AP-42	8760	N/A	7.16	7.18
			PM		7.6	lb/MMscf	AP-42	8760	N/A	0.72	0.72
			PM ₁₀		5.7	lb/MMscf	AP-42	8760	N/A	0.51	0.51
			VOC		2.3	lb/MMscf	AP-42	8760	N/A	0.47	0.47
A18	C1001	KT1001	VOC	HMDA	680.67	lb/hr	Eng. Calcs	8760	99.99%	0.0020	0.0008
A19		KF1011	VOC	HMDA	0.028	lb/hr	Eng. Calcs	8760	N/A	0.1208	0.026
A22	C2105	KH2105	PM		4.65	lb/hr	Eng. Calcs	8760	99.90%	0.02	0.02
105	101522	14 4 - 2 -	PM ₁₀		2.33	lb/hr	Eng. Calcs	8760	99.90%	0.02	0.02
A23	KH120	KM120	PM	AA	0.55	lb/hr	Eng. Calcs	8760	99.90%	0.002	-
10.1	KEOEA	WEDEC	PM ₁₀		0.28	lb/hr	Eng. Calcs	8760	99.80%	0.002	
A24	KF851	KF850	VOC	HMDA	0.0023	lb/hr	Eng. Calcs	8760	99.00%	0.0001	-
A50		BD101	VOC		0.0086	lb/hr	Eng. Calcs	8760	N/A	0.04	0.03
A51		KF306			7.94E-06	lb/hr	Eng. Calcs	8760	N/A	0.00003	0.0147
			PM		9.45E-02	lb/hr	Eng. Calcs	46	N/A	0.00216	
450	6620	1/1.4 (200	PM ₁₀		4.73E-02	lb/hr	Eng. Calcs	46	N/A	0.00108	0.02
A52	C630	KM-630	PM		14.6	lb/hr	Eng. Calcs	2232	99.90%	-	0.02
	DOES NOT EXIS	Personal states and an and an and an and an and an and an	PM ₁₀	taling and a sur-	7.3	lb/hr	Eng. Calcs	2232	99.80%	6000 A 200	0.02
A53	C702	KM-702	PM		18.2	lb/hr	Eng. Calcs	2232	99.90%		0.02
	DUES NUT ENIS	A REAL PROPERTY AND A REAL	PM ₁₀ VOC	HMDA	9.1	lb/hr	Eng. Calcs	2232	99.80%	THE STATE STOCKED BY STOCKED	0.02
A54 A55		KF-270 CM-642	CO	HIVIDA	0.0028	lb/hr lb/MMscf	Eng. Calcs AP-42	8760 8760	N/A N/A	0.012	0.0005
ADD		CIVI-042	SOx		0.6	lb/MMscf	AP-42 AP-42	8760	N/A N/A	0.130	0.01
			PM		7.6	lb/MMscf	AP-42 AP-42	8760	N/A N/A	0.001	0.01
			PIVI PM ₁₀		5.7	lb/MMscf	AP-42 AP-42	8760	N/A N/A	0.012	0
			VOC		2.3	lb/MMscf	AP-42 AP-42	8760	N/A	0.003	0
			VOC		5.5	lb/MMscf	AP-42 AP-42	8760	N/A	0.004	0
			NOx		100	lb/MMscf	AP-42 AP-42	8760	N/A	1.31	0.44
		1	VOC	Amodel	0.02	lb/hr	Eng. Calcs	8760	N/A	0	0.44
A56		KM-640	VOC	Amodel	0.02	lb/hr	Eng. Calcs	260	N/A	-	0
	DOES NOT EXIS		VOC	Amodel	0.02	10/11	Ling. Calcs	200	N/A		
A70	KH751	KM750	PM	PPA	15.23	lb/hr	Eng. Calcs	8760	99.90%	0.067	
	KIT/51	111730	PM ₁₀		7.61	lb/hr	Eng. Calcs	8760	99.80%	0.067	
A71	КН759	KC757	PM	PPA	0.98	lb/hr	Eng. Calcs	8760	99.90%	0.004	
7.7.1		10/5/	PM ₁₀	114	0.49	lb/hr	Eng. Calcs	8760	99.80%	0.004	-
A72	KH761	KD760	PM	PPA	9.45	lb/hr	Eng. Calcs	8760	99.90%	0.004	-
A/2	KIIIOI	10700	PM ₁₀	114	4.73	lb/hr	Eng. Calcs	8760	99.80%	0.041	-
A73	KH781	KM780	PM	РРА	15.05	lb/hr	Eng. Calcs	8760	99.90%	0.066	-
			PM ₁₀		7.52	lb/hr	Eng. Calcs	8760	99.80%	0.066	-
TOTAL	TOTAL		VOC	HMDA	1.52	12/11	Engl cuics	0,00	55.0070	4.47	2.36
			VOC							2.72	3.53
			VOC						1	0.014	0.0015
			VOC						1	0.04	0.03
			VOC	Amodel					1	0	0.05
			VOC			-			1	0.70	2.53
			1.50						1	0.21	0.21
				A CARLES AND A CARLES					1	0.000035	0.0147
			NOx							8.81	7.97
							1				1.51
										1.66	1 54
			SOx							1.66	1.54
										1.66 7.60 1.15	1.54 7.51 5.03

Emissions (I	b/hr)												
[PM	PM10	PM2.5	SO2	со	NOX	VOC	SAM	LEAD	HCI	HMDA	THF	HAC
-	0.26	0.21	0.21	0.38	1.74	2.01	1.81	0.00	0.00	0.00	1.02	0.62	0.01
Emissions (t	tpy)												
	PM	PM10	PM2.5	SO2	со	NOX	VOC	SAM	LEAD	HCI	HMDA	THF	HAC
	1.15	0.93	0.93	1.66	7.60	8.81	7.95				4.47	2.72	0.04

Amodel Unit - Air Emissions Estimate 2023

A-1 INERT GAS RESERVOIR KF-150

Assumptions:

- 1. Bin filter concentration is estimated to be no more than 0.005 lb PM / scf air based on standard baghouse design from previous projects.
- 2. Flow from KM-101 and KM-111 cannot occur at the same time, but flow from KM-101 or KM-111 and KM-121 can occur at the same time.
- 3. The catalyst system has been moved downstream in the Amodel process, so KM-226 is no longer considered as part of these emissions calculations.
- 4. Vast majority of nitrogen reaching KF-150 is recycled. Blowdown assumed in the original calculations is 22 scfm average; 600 scfm maximum.
- 5. Filtration efficiency is 99.9% of PM of 2 micron diameter.
- 6. PM10 concentration is 50% of PM concentration in uncontrolled flows.
- 7. Controlled PM10 emissions are equal to controlled PM emissions.

8. Bin filter operation is based on 24 hr/day, 365 day/yr operation.

Design parameters for each filter are as follows:

Descrip	tion Flow I	ate (scfm)	Temp (F)	Pressure (psig	Flow rate (acfm)
		3150	120	0.5	3346
		3150	120	0.5	3346
AA KM	-121	1288	120	0.5	1368

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY (%)	EXHAUST LOADING RATE	OPERATING HOURS	BIN FILTER EXHAUST LOAD
	PM	3150	0.005	945	99.9%	0.945	8760	4.14	
A-IA	A-1A	PM ₁₀	3150	0.0025	472.5	99.8%	0.945	8760	4.14
4.10	PM	3150	0.005	945	99.9%	0.945	8760	4.14	
A-1B	A-1B	PM10	3150	0.0025	472.5	99.8%	0.945	8760	4.14
A-1C	AA SILO VENT FILTER KM-121	PM	1288	0.005	386.4	99.9%	0.3864	8760	1.69
A-1C	AA SILO VENT FILTER RIVI-121	PM ₁₀	1288	0.0025	193.2	99.8%	0.3864	8760	1.69
		PM	1288	0.005	386.4	99.9%	0.3864	8760	1.69
A-1D	REMOVED FROM SERVICE	PM ₁₀	1288	0.0025	193.2	99.8%	0.3864	8760	1.69

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	EXHAUST LOADING RATE	EXHAUST FLOW RATE	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
A1	INERT GAS RESERVOIR KF-150	PM	4438	1.3314	22	0.0066	8760	0.029
INCLUDES A-1C; NO LONGE	R INCLUDES A-1D	PM ₁₀	4438	1.3314	22	0.0066	8760	0.029
MAXIMUM ASSUMING 600	SCFM VENT RATE AND A CONTROL	PM	600	180	600	0.18		
EFFICIENCY OF 99.9%		PM ₁₀	600	90	600	0.09		

A-1F, A-1G, A-1H - RAW MATERIAL WEIGH FEEDERS C201, C211, AND C221

Assumptions:

1. Bin filter concentration is estimated to be no more than 0.005 lb PM / scf air based on standard baghouse design from previous projects.

2. Filtration efficiency is 99.9% of PM and 99.8% for PM10.

3. PM10 concentration is 50% of PM concentration in uncontrolled flows.

4. Controlled PM10 emissions are equal to controlled PM emissions.

5. Bin filter operation is based on displacement of gas during time of filling.

6. Average solids density is 45 lb/cuft.

10. Typical bin exhaust temperature and pressure is 120 F at 0.5 psig.

11. Bin filter operation is based on 24 hr/day, 365 day/yr operation.

Original 2001 Estimate				Updated 2023 Estimate			

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY (%)	EXHAUST LOADING RATE	OPERATING HOURS	BIN FILTER EXHAUST LOAD
	PM	1.70	0.005	0.51	99.9%	0.00051	8760	0.0022	
A-1F	A-1F	PM ₁₀	1.70	0.0025	0.26	99.8%	0.00051	8760	0.0022
	PM	0.66	0.005	0.20	99.9%	0.00020	8760	0.0009	
A-16	A-1G	PM ₁₀	0.66	0.0025	0.10	99.8%	0.00020	8760	0.0009
A 111		PM	0.23	0.005	0.07	99.9%	0.00007	8760	0.0003
A-1H	PM ₁₀	0.23	0.0025	0.03	99.8%	0.00007	8760	0.0003	
A-1F, A-1G, A-1H MAXIMUM EMISSIONS		PM	5.49	0.005	1.65	99.9%	0.00165		
	PM ₁₀	5.49	0.0025	0.82	99.8%	0.00165			

A-2 - SEAL POT KF-143

Assumptions:

4. Information from the 1990 mass balance shows:

Parameter	Inlet Stream	Outlet Stream	
HMDA (lb/hr)	0.1	0	
Water (lb/hr)	1.6	1.6	
Nitrogen (lb/hr)	78	78	
Temperature (F)	95	95	
Pressure (psia)	15.2	14.7	
Flow Rate (acfm)	111.46	115.25	

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED	CONTROL EFFICIENCY (%)	CONTROLLED EMISSIONS	OPERATING HOURS	ANNUAL EMISSIONS	ANNUAL EMISSIONS
	SEAL POT KE-143	HMDA	1.20	99.0%	0.012	47	0.5652	0.0003

A-3 - SEAL POT KF-142

Assumptions:

4. Tank pressure is atmospheric.

5. Maximum tank temperature is 150 F.

8. Vapor pressure of HMDA at 140 F is 3 mm Hg (0.058 psia).

10. Information from the 1990 mass balance shows:

Parameter	Inlet Stream	Outlet Stream
HMDA (lb/hr)	0.2	0
Water (lb/hr)	4.9	4.9
Nitrogen (lb/hr)	234.9	234.9
Temperature (F)	95	95
Pressure (psia)	15.2	14.7
Flow Rate (acfm)	20.22	20.88

Working Emissions

Uncontrolled working	Operating Hours	Uncontrolled Emissions (lb/yr)	Total Uncontrolled
0.2	782	156.4	156.4

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	14.696	14.696
Temperature (F)	140	150
Volume (acf)	3770	3832.87

Breathing volume = 3,833 acf - 3770 acf = 63 acf / day * 365 days = 22,947 acf/yr

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)	HMDA (lb/yr)
22,947	150	14.696	19,559	23.64

Uncontrolled HMDA breathing emissions = 19,559 scf/yr * 1 lbmol HMDA / 379.5 scf * 116.21 lb HMDA / lbmol HMDA * 0.058 psia / 14.696 psia = 23.64 lb HMDA / year

Uncontrolled working	Operating Hours	Uncontrolled Emissions (lb/yr)	Total Uncontrolled	Total Uncontrolled
0.2	782	156.4	180.04	0.02055

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED	CONTROL EFFICIENCY (%)	CONTROLLED EMISSIONS	OPERATING HOURS	ANNUAL EMISSIONS	ANNUAL EMISSIONS
Δ-3	SEAL POT KF-142	HMDA	0.0206	99.1%	0.00019	8760	1.6955	0.0008

The maximum VOC emissions rate as HMDA is: 0.2 lb HMDA / hr uncontrolled rate * (1 - 0.99 efficiency) = 0.002 lb/hr HMDA

Redacted Copy

A-5 - BIN FILTER KM-227 - REMOVED FROM SERVICE SINCE 2001 ESTIMATE

A-6 - SEAL WATER TANK KF-613

Assumptions:

				2001 Esti	mate (1990 Mass Balance)					
Parameter	Inlet to KD-610	Outlet from KD-610	Outlet from KC-603A	Inlet to KT-602	Outlet from KC-601B	Inlet to KD-602A	Outlet from KC-601A	Inlet to BD vac pump	Outlet from BD vac pump	Outlet from KF-613
HMDA (lb/hr)	121.6	0.30	0.10	10.8	0.1	0	0.1	-	-	0.30
Water (lb/hr)	1214.7	138.5	112.5	96.5	62.5	41.6	75	279.6	55.8	305.8
Nitrogen (lb/hr)	225	225	225	125	125	150	150.5	5.5	5.5	506
	2	-	-	-		-		0.54	0.18	0.18
			-	-		-		0.0014	0.0005	0.0005
Temperature (F)	650	133	111	650	103	650	100	160	111	111
Pressure (psia)	4.86	4.86	14.7	1.4	14.7	1.4	14.7	4.86	14.7	14.7
Flow Rate (acfm)	3123	343	99.1	1405	54.3	1086	64.9	358.4	49.1	267.4
Flow Rate (scfm)	483.7	99.5	90.3	62.7	50.2	48.4	60.3	99.4	44.7	243.6

		in the second		20	23 Estimate (6 klb/hr)					
Parameter	Inlet to KD-610-1	Outlet from KD-610-1	Outlet from KC-603B&C	Inlet to KT-602	Outlet from KC-601B	Inlet to KD-602A	Inlet to KC-601A from	Inlet to KC-601A from	Outlet from KC-601A	Outlet from KF-613
HMDA (lb/hr)	221	0.55	0.01	33	0.31	4	0.01		0.04	0.35
Water (lb/hr)	1018	116.07	94.28	210	210	74	29.3	279.6	382.90	716.48
Nitrogen (lb/hr)		and the second sec	Constant of the second second					5.5	5.50	5.50
		and a second	a and a second a second second second	establistica establistica	a here the second a second second		Contraction and Contraction	0.54	0.18	0.18
	-		-	and the state of the	a second group and a second second		a second a second second	0.0014	0.0005	0.0005

				202	23 Estimate (10 klb/hr)					
Parameter	Inlet to KD-610	Outlet from KD-610	Outlet from KC-603B&C	Inlet to KT-602	Outlet from KC-601B	Inlet to KD-602A	Inlet to KC-601A from	Inlet to KC-601A from	Outlet from KC-601A	Outlet from KF-613
HMDA (lb/hr)	553	1.38	0.01	55	0.51	6	0.01		0.06	0.58
Water (lb/hr)	2584	294.63	239.32	354	354	124	48.83	279.6	452.43	1094.59
Nitrogen (lb/hr)		and second second second second second	San Share and Share a		s an	Service States - The Street States	a second a second a second second second	5.5	5.50	5.50
			-		-	March 1997	Contraction - Contraction	0.54	0.18	0.18
			a contraction <u>-</u> the second second	and the second	2	and the start - the start and	a antipita a constante de la c	0.0014	0.0005	0.0005

EMISSION POINT	Pollutant	Controlled Emission Rate	Operating Hours	Annual Emissions	Maximum Rate Factor	Maximum Emissions
	HMDA	0.58	8760.00	2.5415	1.0862	0.000315
A-6	THF	0.18	747.00	0.0672	1.0862	0.000098
	BD	0.0005	747.00	0.0002	1.0862	0.000000

A-6A - HMDA RECOVERY TANK KF-690

Assumptions:

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	14.696	14.696
Temperature (F)	130	140
Volume (acf)	71	72

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
365	140	14.696	316

Breathing emissions = 316 scf/yr * 1 lbmol HMDA / 379.5 scf * 116.21 lb HMDA / 1 lbmol HMDA * 0.0753 psia / 14.696 psia * 20% HMDA = 0.09916 lb HMDA / year

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED	OPERATING HOURS	ANNUAL EMISSIONS	ANNUAL EMISSIONS
A-6A	HMDA RECOVERY TANK KF-690	VOC - HMDA	1.13E-05	8760	0.09916	4.96E-05

A-6B - CENTRIFUGAL DRYER FAN KC-692

Assumptions:

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
A.C.D.	CENTRIFUGAL DRYER FAN	PM	795	0.000015	0.72	99.00%	0.0072	8760	0.03
A-6B	KC-692	PM10	795	0.0000075	0.36	98.00%	0.0072	8760	0.03

Due to its continuous operation, maximum and average emissions are the same for the centrifugal dryer fan KC-692.

Redacted Copy

A-7 VACUUM LOADING RECEIVER KM-104

Assumptions:

<u>Temp (F)</u> 110 11. Design parameters for this source are: Flow rate (scfm) Pressure (psig) Flow rate (acfm) 849 1396 -4.9 Unloading Baghouse exhaust (max) 109 110 120 0 Baghouse exhaust (avg) 20 110 0 22

Particulate loading to baghouse:

2001 estimate:				
190,000	scfm unloading flow rate	min/railcar	90%	0.049
lb/railcar	849	456	separation efficiency	lb/scf baghouse loading

2023 estimate:				
55,000	scfm unloading flow rate	min/railcar compartment	90%	0.015
lb/railcar compartment	849	420	separation efficiency	lb/scf baghouse loading

EMISSION POINT	DESCRIPTION	POLLUTANT	EXHAUST FLOW RATE	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY (%)	EXHAUST LOADING RATE	OPERATING HOURS	BIN FILTER EXHAUST LOAD
	VACUUM UNLOADING RECEIVER	PM	20	0.015	18.5	99.9%	0.019	7,392	0.068
4.7	VACUOIVI UNLUADING RECEIVER	PM ₁₀	20	0.008	9.3	99.8%	0.019	7,392	0.068
A-7		PM	109	0.015	100.87	99.9%	0.101		
		PM ₁₀	109	0.008	50.44	99.8%	0.101		

A-8 FUME COLLECTION KC-633-1

Assumptions:									
4. Design parameters for t	his source are:		Flow rate (scfm) 2030	<u>Temp (F)</u> 122	<u>Pressure (psig)</u> 0	<u>Flow rate (acfm)</u> 2272			
Emission Point	Description Fume Collection KC-633-1	Pollutant HMDA	Uncontrolled Emissions 292.00	Control Efficiency 99.86%	Controlled Emission Rate 0.4088	Operating Hours 8760	Annual Emissions 1.79]	
A-8 Maximum Emissions				55.00%	0.4006	8760	1.79	1	
Pollutant	Controlled Emissions Rate (lb/hr)	Maximum Rate Factor	Maximum Emissions						
HMDA	0.4088	1.0862	0.4440						

A-9 - Pellet Cooler Chips Collector KM-703 (Baghouse)

Assumptions: 8. Design parameters for this source are: Piow rate (scfm) 13,876 160 0.5 16,000

KCV run time = 4,000,000 lbs produced / 6,000 lbs/hr production rate = 400 hours * 60 min / hr = 24,000 min run time Fines produced / KCV run = 3 boxes * 750 kg * 2.20462 lb/kg = 4,960.17 lb pellet fines / KCV run Solids loading rate = 4,960.17 lb pellet fines / 24,000 min / 13,876 scfm = 0.000015 lb/scf

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
	Peller Cooler Chips Collector KM-	PM	13,876	0.000015	12.49	99.90%	0.0125	8760	0.05
A-9	703	PM10	13,876	0.000075	6.24	99.80%	0.0125	8760	0.05

Due to the continuous nature of the baghouse, controlled emissions rate is both the average and the maximum emissions rate.

A-10 - Test Bin Chips Collector KM-728 (Baghouse)

Assumptions:

Design parameters for this source are:		Flow rate (scfm)	Temp (F)	Pressure (psig)	Flow rate (acfm)
	Chip Collector Flow	443	110	0.5	470
	Exhaust Flow, avg	4.7	110	0.5	5
	Exhaust Flow, max	99	110	0.5	105

POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	FILTER CONTROL	TOTAL FILTER EMISSION	OPERATING HOURS	TOTAL FILTER EMISSIONS
PM	443	0.000015	0.40	99.90%	0.0004	8760	0.002
PM ₁₀	443	0.0000075	0.20	99.80%	0.0004	8760	0.002

Emissions are reduced by a partial recycle of Chip Collector exhaust (4.7 scfm vs. 443 scfm).

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	TOTAL FILTER EMISSION	EXHAUST FLOW RATE	RECYCLE CONTROL	TOTAL CONTROLLED	OPERATING HOURS	ANNUAL EMISSIONS
	Test Die Chine Collector KM 729	PM	443	0.0004	4.70	98.94%	4.23E-06	8760	1.85E-05
A-10	Test Bin Chips Collector KM-728	PM10	443	0.0004	4.70	98.94%	4.23E-06	8760	1.85E-05

Maximum Emissions

Pollutant	Maximum Exhaust Rate (scfm)	Controlled Concentration	Maximum Emissions
PM	99	1.50E-08	8.91E-05
PM ₁₀	99	1.50E-08	8.91E-05

A-11 - Product Silo Chips Collector KM-733 (Baghouse)

Assumptions:

8. Design parameters for th	is source are:		Flow rate (scfm)	Temp (F)	Pressure (psig)	Flow rate (acfm)	
		Chip Collector Flow	1698	110	0.5	1800	
		Exhaust Flow, avg	13.2	110	0.5	14	
		Exhaust Flow, max	104	110	0.5	110	
POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	FILTER CONTROL	TOTAL FILTER EMISSION	OPERATING HOURS	TOTAL FILTER EMISSIONS
PM	1,698	0.000015	1.53	99.90%	0.0015	8760	0.007
PM10	1,698	0.0000075	0.76	99.80%	0.0015	8760	0.007

Emissions are reduced by a partial recycle of Chip Collector exhaust (4.7 scfm vs. 443 scfm).

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	TOTAL FILTER EMISSION	EXHAUST FLOW RATE	RECYCLE CONTROL	TOTAL CONTROLLED	OPERATING HOURS	ANNUAL EMISSIONS
A 44	PM	1,698	0.0015	13.20	99.22%	1.19E-05	8760	5.20E-05	
A-11	Product Silo Chips Collector KM-733	PM10	1,698	0.0015	13.20	99.22%	1.19E-05	8760	5.20E-05

Maximum Emissions

Pollutant	Maximum Exhaust Rate (scfm)	Controlled Concentration	Maximum Emissions
PM	104	1.50E-08	9.36E-05
PM ₁₀	104	1.50E-08	9.36E-05

Working Emissions

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
24,815	215	14.896	19,374

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	14.896	14.896
Temperature (F)	205	215
Volume (acf)	1805	1832

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
9,855	215	14.896	7,694

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED	OPERATING HOURS	ANNUAL EMISSION
A-12			0.0030	8760	0.01295
Flow Data (ana)	flow Bate (asfm)	Tomp (E)	Brossure (psip)	Flow Pato (cofm)	1
Flow Rate (gpm)	Flow Rate (acfm)	Temp (F)	Pressure (psia)	Flow Rate (scfm)]

Maximum Emissions

Pollutant	Maximum Exhaust Rate (scfm)	Controlled Concentration	Maximum Emissions
VOC - BD	13.05	0.00096	0.75

A-13 / KF-802			
Assumptions:			
VOC Loading			
Working Emissions			

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
32.618	160	14.896	27,726

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	14.896	14.896
Temperature (F)	150	160
Volume (acf)	1805	1835

Breathing volume = 1835 acf - 1805 acf = 30 acf / day * 365 days = 10,950 acf/yr

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
10,950	160	14.896	9,308

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED	OPERATING HOURS	ANNUAL EMISSIONS
			0.0002	8760	0.00092
A-13			0.0053	8760	0.02338

Flow Rate (gpm)	Flow Rate (acfm)	Temp (F)	Pressure (psia)	Flow Rate (scfm)
125	16.71	160	14.896	14.21

Maximum Emissions

Pollutant	Maximum Exhaust Rate (scfm)	Controlled Concentration	Maximum Emissions
	14.21	0.00005	0.04
	14.21	0.00126	1.08

A-14 / KF-803 - DOES NOT EXIST. Water cut from BD recovery is	umped directly to wastewater.	
A-15 / KB-807		
Assumptions:		

Flush hours / year = 120 min/flush * 1 hr/60 min * 63 flushes per year = 126 hours/year

Because BD flush compositions are assumed the same, the 2001 estimates for the compositions of the flash from BD recovery are used. Each flush is assumed to take 120 min, so the rate can be calculated by taking the amount per flush over the flush duration.

Component	Flash Amount to Flare (Ib)	Rate (Ib/min) (amount/120
	1,670	13.92
Water	556.7	4.64
	0	0.00
Nitrogen	8.7	0.07

Combustion assumptions made include that natural gas density is 23.5 cf/lb, the natural gas heating value is 1020 BTU/cf, 30% excess oxygen is used for complete combustion of natural gas and organics, and air is 21% oxygen. Furthermore, AP-42 emission factors are used in the calculation of emissions of combustion byproducts, and are shown below:

Byproduct	lb/MMscf natural gas	lb/MMBTU natural gas
CO	84	0.0824
SOx	0.6	0.0006
PM	7.6	0.0075
PM ₁₀	5.7	0.0056
Methane	2.3	0.0023
VOC	5.5	0.0054
Nox	100	0.0980

C4H8O + 5.5 O2 = 4 CO2 + 4 H2O					
Component	Rate (lb/min)	MW (lb/lbmol)	Rate (lbmol/min		
	13.22	72.11	0.1833		
O2 required	32.27	32.00	1.0084		
CO2 created	32.28	44.01	0.7334		
H2O created	13.22	18.02	0.7334		

CH4 + 2 O2 = CO2 + 2 H2O					
Component	Component Rate (lb/min)		Rate (lbmol/mir		
Natural Gas combusted	16.59	16.04	1.0340		
O2 required	66.18	32.00	2.0681		
CO2 created	45.51	44.01	1.0340		
H2O created	37.27	18.02	2.0681		

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
	13.92	72.11	73.23
Water	4.64	18.02	97.69
Natural Gas	16.67	16.04	394.29
Nitrogen	481.47	28.01	6,522.66
Oxygen	127.97	32.00	1,517.48
Flow rate (scfm)	Temperature (F)	Pressure (psig)	Flow rate (acf
8.605	150	0	10.095

Natural gas thermal rate = 16.67 lb/min * 23.5 scf/lb * 1020 BTU/scf = 0.399580 MMBTU/min

Byproduct	lb/MMscf natural gas	lb/MMBTU natural gas	Amount generated (lb/min
CO	84	0.0824	0.03291
SOx	0.6	0.0006	0.00024
PM	7.6	0.0075	0.00298
PM ₁₀	5.7	0.0056	0.00223
Methane	2.3	0.0023	0.00090
VOC	5.5	0.0054	0.00215
Nox	100	0.0980	0.03917
Natural Gas Consumed			0.08058

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
	0.696	72.11	3.66
Water	55.12	18.02	1,160.73
Nitrogen	481.47	28.01	6,522.66
Oxygen	29.52	32.00	350.09
CO2	77.78	44.01	670.66
CO	0.03291	28.01	0.45
SOx	0.00024	64	0.00
PM	0.00298	a second state of the seco	and the second second
PM ₁₀	0.00223		and the second second
Methane	0.00090	16.04	0.02
VOC	0.00215	C Provinces and the second second	
Nox	0.03917	46	0.32

Flow rate (scfm)	Temperature (F)	Pressure (psig)	Flow rate (acrm)
8,709	150	0	10,216

CH4 + 2 O2 = CO2 + 2 H2O					
Component	Component Rate (lb/min)	MW (lb/lbmol)	Rate (Ibmol/min)		
Natural Gas combusted	0.36	16.04	0.0224		
O2 required	1.44	32.00	0.0449		
CO2 created	0.99	44.01	0.0224		
H2O created	0.81	18.02	0.0449		

Natural gas thermal rate = 0.3616 lb/min * 23.5 scf/lb * 1020 BTU/scf = 0.008668 MMBTU/min

۲

Byproduct	lb/MMscf natural gas	lb/MMBTU natural gas	Amount generated (lb/mir
CO	84	0.0824	0.00071
SOx	0.6	0.0006	0.00001
PM	7.6	0.0075	0.00006
PM10	5.7	0.0056	0.00005
Methane	2.3	0.0023	0.00002
VOC	5.5	0.0054	0.00005
Nox	100	0.0980	0.00085
Natural Gas Consumed			0.00175
e-Combustion Flow (Downt	ime)		
Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
Natural Gas	0.3616	16.04	8.55
Nitrogen	7.0559	28.01	95.59
Oxygen	1.8756	32.00	22.24
Flow rate (scfm)	Temperature (F)	Pressure (psig)	Flow rate (acfm)
126	150	0	148
st-Combustion Emissions (I Component	Downtime) Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
Water	0.81	18.02	17.03
Nitrogen	7.06	28.01	95.59
Oxygen	0.44	32.00	5.21
CO2	0.99	44.01	8.51
CO	0.00071	28.01	0.01
SOx	0.00001	64	0.00
PM	0.00006		a ta da a serie da a com
PM ₁₀	0.00005	and the second se	Construction of the second second
PM ₁₀ Methane	0.00005 0.00002	16.04	0.00
		16.04	0.00
Methane	0.00002	16.04 46	0.00
Methane VOC	0.00002 0.00005		

Component	Recovery Rate (lb/min)	Recovery Time (hrs/year)	Down Time Rate (lb/min)	Down Time (hrs/year)	Annual Emissions (lb/yr)	Emissions rate
THF	0.69583	126	0.00000	8634	5,260.50	0.69
CO2	77.78396	126	0.98735	8634	1,099,533.19	144.89
CO	0.03291	126	0.00071	8634	618.57	0.08
SOx	0.00024	126	0.00001	8634	4.42	0.00
PM	0.00298	126	0.00006	8634	55.97	0.01
PM ₁₀	0.00223	126	0.00005	8634	41.97	0.01
Methane	0.00090	126	0.00002	8634	16.94	0.00
VOC	0.00215	126	0.00005	8634	40.50	0.01
Nox	0.03917	126	0.00085	8634	736.39	0.10

EMISSION POINT	DESCRIPTION	POLLUTANT	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
		THF	0.6005	8760	2.63
		CO2	125.5175	8760	549.8
		со	0.0706	8760	0.309
		SOx	0.0005	8760	0.002
A-15	FLARE KB-807	PM	0.0064	8760	0.028
		PM ₁₀	0.0048	8760	0.021
		Methane	0.0019	8760	0.008
		VOC	0.0046	8760	0.020
		Nox	0.0841	8760	0.368

Emergency Combustion Calculation

The emergency combustion calculations remain unchanged from the 2001 estimate. The load to flare per emergency batch is the same as in the 2001 estimate:

Component	Load to flare per emergency batch	Loading rate (load to flare
	800	1.86
Water	1580	3.67
	987	2.30
Nitrogen	31.18 (1 scfm for 430 min)	0.07

C4H8O + 5.5 O2 = 4 CO2 + 4 H2O					
Component	Rate (lb/min)	MW (lb/lbmol)	Rate (Ibmol/min		
	1.77	72.11	0.0245		
O2 required	4.31	32.00	0.1348		
CO2 created	4.31	44.01	0.0980		
H2O created	1.77	18.02	0.0980		

	C4H10O2 + 5.5 O2 = 4 CO2 + 5 H2O						
Component	Rate (lb/min)	MW (lb/lbmol)	Rate (Ibmol/min)				
	2.18	90.12	0.0242				
O2 required	4.26	32.00	0.1331				
CO2 created	4.26	44.01	0.0968				
H2O created	2.18	18.02	0.1210				

Natural gas flow rate = 1,000 lb/hr max / 60 min / hr = 16.67 lb/min

CH4 + 2 O2 = CO2 + 2 H2O				
Component	Rate (lb/min)	MW (lb/lbmol)	Rate (lbmol/min)	
Natural Gas combusted	16.67	16.04	1.0391	
O2 required	66.50	32.00	2.0781	
CO2 created	45.73	44.01	1.0391	
H2O created	37.45	18.02	2.0781	

Total air required = total O2 required * 130% (30% excess) / 21% (21% oxygen in air) Total air required = (4.31 + 4.26 + 66.50) * 130% / 21% = 464.74 lb/min Combustion nitrogen = 464.74 * 0.21 = 97.59 lb/min

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
	1.86	72.11	9.79
	2.30	90.12	9.66
Water	3.67	18.02	77.37
Natural Gas	16.67	16.04	394.29
Nitrogen	367.21	28.01	4,974.71
Oxygen	97.59	32.00	1,157.23
Flow rate (scfm)	Temperature (F)	Pressure (psig)	Flow rate (acfm)
6,623	150	0	7,769

Natural gas thermal rate = 16.67 lb/min * 23.5 scf/lb * 1020 BTU/scf = 0.399580 MMBTU/min

Byproduct	lb/MMscf natural gas	lb/MMBTU natural gas	Amount generated (lb/min
CO	84	0.0824	0.03291
SOx	0.6	0.0006	0.00024
PM	7.6	0.0075	0.00298
PM ₁₀	5.7	0.0056	0.00223
Methane	2.3	0.0023	0.00090
VOC	5.5	0.0054	0.00215
Nox	100	0.0980	0.03917
Natural Gas Consumed			0.08058

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm
	0.093	72.11	0.49
	0.115	90.12	0.48
Water	45.07	18.02	949.06
Nitrogen	367.21	28.01	4,974.71
Oxygen	22.52	32.00	267.01
CO2	54.30	44.01	468.21
CO	0.03291	28.01	0.45
SOx	0.00024	64	0.00
PM	0.00298		
PM ₁₀	0.00223		INSPECTS IN THE SEA
Methane	0.00090	16.04	0.02
VOC	0.00215		のなどのないです。
Nox	0.03917	46	0.32

 Flow rate (scfm)
 Temperature (F)
 Pressure (psig)
 Flow rate (acfm)

 6,661
 150
 0
 7,814

EMISSION POINT	DESCRIPTION	POLLUTANT	CONTROLLED EMISSION
	DESCRIPTION FLARE KB-807 MAXIMUM EMISSIONS	THF	5.5814
	Γ	BD	6.8860
	F	CO2	3258.2232
	Γ	CO	1.9744
	FLARE KB-807	SOx	0.0141
A-15	MAXIMUM EMISSIONS	PM	0.1786
	F	PM ₁₀	0.1340
	F	Methane	0.0541
	F	VOC	0.1293
	F	Nox	2.3505

A-16 - Hot Oil Drain Tank KD-908

The 2001 emissions calculations overestimated emissions from KD-908, estimating 0.58 lb/hr and 2.53 TPY. Based on actual Syltherm 800 consumption data, these numbers are incorrect. Calculations providing a more accurate estimate are shown below:

Assumptions:

Average hot oil consumption rate = 10 drums / 3 years * 55 gal / drum / 7.48052 gal / cuft * 57.44 lb/cuft Syltherm 800 * 1 year / 365 day * 1 day / 24 hr = 0.1607 lb/hr Average hot oil vent rate = 0.1607 lb/hr * 1 hr / 60 min / 331.8 lb/lbmol * 379.5 scf / lbmol = 8.07E-06 scfm

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	EMISSION RATE (LB/HR)	OPERATING HOURS	ANNUAL EMISSIONS
A-16	Hot Oil Drain Tank KD-908	Syltherm 800	8.07E-06	331.89	0.1607	8760	0.70

Due to its continuous operation, maximum and average emissions are the same for the hot oil drain tank KD-908.

A-17 - Hot Oil Heater KB-901

Assumptions:

Byproduct	lb/MMscf natural gas	lb/MMBTU natural gas
со	84	0.0824
SOx	0.6	0.0006
PM	7.6	0.0075
PM ₁₀	5.7	0.0056
Methane	2.3	0.0023
VOC	5.5	0.0054

Byproduct	lb/1000 gal distillate oil	MMBTU / 1000 gal	lb / MMBTU
со	5	140	0.03571
PM	3.3	140	0.02357
PM ₁₀	1.3	140	0.00929
Methane	0.052	140	0.00037
VOC	0.2	140	0.00143

Natural Gas Combustion Calculation

Natural Gas Combustion

CH4 + 2 O2 = CO2 + 2 H2O				
Component	Rate (lb/min)	MW (lb/lbmol)	Rate (Ibmol/min)	
Natural Gas combusted	14.42	16.04	0.8990	
O2 required	57.54	32.00	1.7980	
CO2 created	39.57	44.01	0.8990	
H2O created	32.40	18.02	1.7980	

Total air required = total O2 required * 120% (20% excess) / 21% (21% oxygen in air) Total air required = 57.54 lb/min * 120% / 21% = 328.80 lb/min Combustion nitrogen = 356.20 * 0.79 = 259.75 lb/min Combustion oxygen = 356.20 * 0.21 = 69.05 lb/min

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
Natural Gas	14.42	16.04	341.14
Nitrogen	259.75	28.01	3,518.91
Oxygen	69.05	32.00	818.80

Byproduct	lb/MMscf natural gas	lb/MMBTU natural gas	Amount generated (lb/min)
СО	84	0.0824	0.02792
SOx	0.6	0.0006	0.00020
PM	7.6	0.0075	0.00253
PM10	5.7	0.0056	0.00189
Methane	2.3	0.0023	0.00076
VOC	5.5	0.0054	0.00183
Nox	81.6	0.0800	0.02712
Natural Gas Consumed			0.06225

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
Water	32.40	18.02	682.27
Nitrogen	259.75	28.01	3,518.91
Oxygen	11.51	32.00	136.53
CO2	39.57	44.01	341.14
CO	0.02792	28.01	0.38
SOx	0.00020	64	0.00
PM	0.00253		
PM ₁₀	0.00189		States and the
Methane	0.00076	16.04	0.02
VOC	0.00183		
Nox	0.02712	46	0.22
Flow rate (scfm)	Temperature (F)	Pressure (psig)	Flow rate (acfm
4.679	150	0	5,489

Fuel Oil Combustion Calculation

Fuel Oil Composition

Component	Weight %	Usage Rate (lb/min)
Fuel Oil	100%	18.38
Hydrogen	12.31%	2.26
Carbon	87.25%	16.04
Sulfur	0.40%	0.07

Fuel Oil Combustion

	2 H2 + O2	= 2 H2O	
	C + O2	= CO2	
	S + O2 :	= SOx	
Component	Rate (lb/min)	MW (lb/lbmol)	Rate (Ibmol/min)
H2 combusted	2.26	2.02	1.1223
O2 required	17.96	32.00	0.5612
H2O created	20.22	18.02	1.1223
C combusted	16.04	12.01	1.3352
O2 required	42.72	32.00	1.3352
CO2 created	58.76	44.01	1.3352
S combusted	0.07	32.07	0.0023
O2 required	0.07	32.00	0.0023
SOx created	0.15	64.07	0.0023

Total air required = total O2 required * 120% (20% excess) / 21% (21% oxygen in air) Total air required = (17.96 + 42.72 + 0.07) * 120% / 21% = 347.17 lb/min Combustion nitrogen = 347.17 * 0.79 = 274.27 lb/min Combustion oxygen = 347.17 * 0.21 = 72.91 lb/min

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
Fuel Oil	18.38	10.86	642.45
Hydrogen	2.26	2.02	425.87
Carbon	16.04	12.01	506.64
Sulfur	0.07	32.07	0.87
Nitrogen	274.27	28.01	3,715.62
Oxygen	72.91	32.00	864.58

Byproduct	lb/1000 gal distillate oil fired	lb / MMBTU distillate oil	Amount generated
со	5	0.03571	0.01211
PM	3.3	0.02357	0.00799
PM ₁₀	1.3	0.00929	0.00315
Methane	0.052	0.00037	0.00013
VOC	0.2	0.00143	0.00048
NOx	11.2	0.08000	0.02712
		Fuel Oil Consumed	0.05098

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
Water	20.22	18.02	425.87
Nitrogen	274.27	28.01	3,715.62
Oxygen	12.15	32.00	144.13
CO2	58.76	44.01	506.64
CO	0.01211	28.01	0.16
SOx	0.14689	64	0.87
PM	0.00799		
PM ₁₀	0.00315		
Methane	0.00013	16.04	0.00
VOC	0.00048		
Nox	0.02712	46	0.22

EMISSION POINT	DESCRIPTION	POLLUTANT	Natural Gas Emission Rate	Natural Gas Usage (hr/yr)	Fuel Oil Emission Rate	Fuel Oil Usage (hr/yr)	Annual Emissions (lb/yr)	Average Emissions Rate	Annual Emissions	Maximum Emissions Rate
		CO	0.0279	8,395	0.01211	365	14,327	1.64	7.16	1.6751
		SOx	0.0002	8,395	0.14689	365	3,317	0.38	1.66	8.8136
		PM	0.0025	8,395	0.00799	365	1,447	0.17	0.72	0.4794
A-17	Hot Oil Heater KB-901	PM10	0.0019	8,395	0.00315	365	1,023	0.12	0.51	0.1889
		Methane	0.0008	8,395	0.00013	365	388	0.04	0.19	0.0459
		VOC	0.0018	8,395	0.00048	365	931	0.11	0.47	0.1097
		NOx	0.0271	8,395	0.02712	365	14,254	1.63	7.13	1.6272

Redacted Copy

A-18- Vent Scrubber KT-1001

KD-260 Feed Prep Mix Tank

Many of the assumptions made during the 2001 estimate are no longer true. See below for updated calculations.

Assumptions:

Compound	Mass (lb)	MW (lb/lbmol)	Moles	Mole %	Density (lb/cf)	Volume (cf)
	34,782	166.13	209.37	7.74%	45	772.93
	13,377	166.13	80.52	2.98%	45	297.27
AA	4,707	146.14	32.21	1.19%	45	104.60
HMDA	41,479	116.21	356.93	13.20%	58.22	712.45
Water	36,506	18.02	2,025.86	74.90%	62.4	585.03
Total	130.851		2,704.89	100.00%	The second second second second	2,472.28

Inerting Volume = 3 volume exchanges / inerting * 256.2 cf / exchange * 4 inerting/day * 365 days/year = 1,122,156 acfy

Venting Volume = 2,473 cf/batch * 1 batch / 7 hours * 8760 hours / year = 3,094,783 acfy

Action	Flow rate (scf)	Temperature (F)	Pressure (psig)	Flow rate (acf)
Inerting (per year)	789,998	290	0	1,122,156
Venting (per year)	8,848,300	290	45	3,094,783
Total (per year)	9,638,298	290	45	4,216,939
Maximum (per min)	143	290	45	50
Average (per min)	18.34	290	45	6

VOC Loading

HMDA vapor pressure @ 290 F = 2.78 psia * 13.2% HMDA mol % = 0.367 psia

HMDA emissions = 9,638,298 scf/year * 0.367 psia HMDA / 59.7 psia total = 59,251 scf HMDA /year HMDA emissions = 59,251 scf HMDA /year * 1lbmol / 379.5 scf *116.21 lb / 1 lbmol = 18,144 lb HMDA / year

ollutant	Flow Rate (scfm)	Uncontrolled Emission Rate	Control Efficiency %	Controlled Emission Rate	Annual Emissions (TP
HMDA	0.11	2.07	99.99%	0.00021	0.00091
	0.11	2.07	00 00%	0.00021	

Emissions are controlled by control device C1001, vent scrubber KT-1001.

KD-266 Surge Tank

Many of the assumptions made during the 2001 estimate are no longer true. See below for updated calculations.

Assumptions:

Action	Flow rate (scf)	Temperature (F)	Pressure (psig)	Flow rate (acf)
Venting (per year)	8,848,300	290	45	3,094,783
Total (per year)	8,848,300	290	45	3,094,783
Maximum (per min)	143	290	45	50
Average (per min)	16.83	290	45	6

VOC Loading

HMDA vapor pressure @ 290 F = 2.78 psia * 13.2% HMDA mol % = 0.367 psia

HMDA emissions = 8,848,300 scf/year * 0.367 psia HMDA / 59.7 psia total = 54,394 scf HMDA /year HMDA emissions = 54,934 scf HMDA /year * 1lbmol / 379.5 scf *116.21 lb / 1 lbmol = 16,656 lb HMDA / year

Pollutant	Flow Rate (scfm)	Uncontrolled Emission Rate	Control Efficiency %	Controlled Emission Rate	Annual Emissions (TPY)
HMDA	0.10	1.90	99,99%	0.00019	0.00083

Pollutant	Flow Rate (scfm)	Uncontrolled Emission Rate	Control Efficiency %	Controlled Emission Rate
HMDA	143	16.15	99.99%	0.0016

Emissions are controlled by control device C1001, vent scrubber KT-1001.

KF-302 Reflux Pot

Assumptions:

VOC Loading

Component	Weight %	MW (lb/lbmol)	Flow Rate (lb/hr)	Flow Rate (lbmol/hr)	Mole %
Water	96%	18.02	3,840	213.10	99.36%
HMDA	4%	116.21	160	1.38	0.64%
Total	100%	18.65	4,000	214.47	100.00%

HMDA vapor pressure at 140 F = 0.058 psia * 0.64% = 0.0003712 psia

Flow rate (scfm)	Temperature (F)	Pressure (psig)	Flow rate (acfm)
433	140	0	500

HMDA emissions at 140 F = 433 scfm * 0.0003712 psia / 14.696 psia * 1 lbmol HMDA / 379.5 scf * 116.21 lb / lbmol HMDA * 60 min / hr = 0.2009 lb/hr HMDA

DESCRIPTION	POLLUTANT	UNCONTROLLED EMISSION	CONTROL EFFICIENCY (%)	MAXIMUM EMISSIONS
REFLUX POT KF-302	HMDA	0.2009	99.99%	0.00002

Emissions are controlled by control device C1001, vent scrubber KT-1001.

KD-310 Concentrator KO POT

KD-310 is used as an emergency divert for KD-301 and only triggers when the unit experiences plugging.

Assumptions:

HMDA emissions = 615 lb/hr HMDA * 1 lb mol / 116.21 lb * 379.5 scf / 1lbmol * 1 hr / 60 min = 33.472 scfm HMDA

Process Emission Pollutant	Flow Rate (scfm)	Uncontrolled Emission Rate	Control Efficiency %	Controlled Emission Rate	Operating Hours	Annual Emissions (TPE)	Total Hours (hr/yr)	Average Emission Rat
HMDA	33.47	615.00	99.99%	0.06150	3.5	0.00011	8760	2.46E-05

HMDA 33.47 615.00 99.99% 0.0615

Emissions are controlled by control device C1001, vent scrubber KT-1001.

KD-350 DIW Flush Tank - KD-350 has been repurposed from the concentrator divert tank to the DIW flush tank. Its contents is ONLY deionized water, so no tracked emissions are sent to the scrubber.

KD-550 Polymer Divert Tank

Assumptions:

Total divert hours = 21 shutdowns/year * 3 hours flush / shutdown = 63 hours / year

HMDA emissions = 615 lb/hr HMDA * (1 - 90% condensed) = 61.5 lb/hr HMDA emitted

HMDA emissions = 61.5 lb/hr HMDA * 1 lb mol / 116.21 lb * 379.5 scf / 1lbmol * 1 hr / 60 min = 3.3472 scfm HMDA

Average Process Emissions	from KD-550							
Pollutant	Flow Rate (scfm)	Uncontrolled Emission Rate	Control Efficiency %	Controlled Emission Rate	Operating Hours	Annual Emissions (TPY)	Total Hours (hr/yr)	Average Emission Rate
HMDA	3.35	61.50	99.99%	0.00615	63	0.00019	8760	4.42E-05
HMDA	3.35	61.50	99.99%	0.00615	63	0.00019	8760	4.42E-05

Pollutant	Flow Rate (scfm)	Uncontrolled Emission Rate	Control Efficiency %	Controlled Emission Rate	
HMDA	3.35	61.50	99.99%	0.0061	

Emissions are controlled by control device C1001, vent scrubber KT-1001.

A-18 - KT-1001 Vent Scrubber

Assumptions:

EMISSION POINT	Compound	KD-260	KD-266	KF-302	KD-310	KD-550	Total KT-1001
	Average Flow Rate (scfm)	0.11	0.10	0.00	0.000	0.024	0.2403
	Max Flow Rate (scfm)	142.96	142.96	433.33	33.47	3.35	756.06
A-18	Avg Emissions Rate (Ib/hr)	0.00021	0.00019	0.00E+00	0.00000	4.42E-05	0.00044
	Max Emissions Rate (lb/hr)	0.00161	0.00161	2.01E-05	0.06150	0.0061	0.07090
	Annual Emissions (TPY)	0.00091	0.00083	0.00E+00	0.00011	0.00019	0.00204

A-19 - KF-1011 Waste Water Neutralization

Assumptions:

Working Emissions

Action	Flow rate (scf)	Temperature (F)	Pressure (psig)	Flow rate (acf)
Total Throughput (per	23,186,623	100	0	24,591,873
Maximum Venting (per	44.11	100	0	46.78

Working HMDA emissions = 23,186,623 scf / year * 1 lbmol HMDA / 379.5 scf * 116.21 lb HMDA / lbmol HMDA * 0.0005 psia / 14.696 psia = 241.57 lb HM

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	14.768	14.768
Temperature (F)	85	115
Volume (acf)	521.8	550.5

Breathing volume = 550.5 acf - 521.8 acf = 28.7 acf / day * 365 days = 10,476 acf/yr

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
10,476	100	14.768	9,775

Breathing HMDA emissions = 9,775 scf / year * 1 lbmol HMDA / 379.5 scf * 116.21 lb HMDA / lbmol HMDA * 0.0005 psia / 14.696 psia = 0.1018 lb HMDA

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED	OPERATING HOURS	ANNUAL EMISSIONS
A-19	Wastewater Neutralization	VOC - HMDA	0.0276	8760	0.1208

A-22 - PACKAGING BAGHOUSE KH-2105

Assumptions:							
	Exhaust Flow, avg Exhaust Flow, max	15.5 100.4	110 110	0.5 0.5	17 110		

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	FILTER CONTROL	TOTAL FILTER EMISSION	OPERATING HOURS	TOTAL FILTER EMISSIONS
A-22 PACKAGING BAGHOUSE KH-2105	PM	15.5	0.005	4.65	99.90%	0.0047	8760	0.020	
	PM10	15.5	0.0025	2.33	99.80%	0.0047	8760	0.020	

Maximum Emissions

Pollutant	Maximum Exhaust Rate (scfm)	Controlled Concentration	Maximum Emissions	
PM	100.4	5.00E-06	0.0301	
PM ₁₀	100.4	5.00E-06	0.0301	

A-23 - Adipic Acid Sack Station Filter KH-120

Gas emission rate during AA super-sack unloading: 2,204 lb / 30 min * 1 cuft / 40 lb (bulk density) = 1.84 scfm (conditions are ambient, so scfm acceptable)

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY (%)	EXHAUST LOADING RATE	OPERATING HOURS	BIN FILTER EXHAUST LOAD
1.22		PM	1.84	0.005	0.552	99.9%	0.0006	8760	0.002
A-23	AA SACK STATION FILTER	PM10	1.84	0.0025	0.276	99.8%	0.0006	8760	0.002

Due to its continuous operation, the maximum emissions for AA sack station filter are the same as the average emissions.

A-24 - HMDA FEED TANK SEAL POT KF-851

Assumptions:

Working Emissions

Action	Flow rate (scf)	Temperature (F)	Pressure (psig)	Flow rate (acf)
Total Throughput (per	494,253	140	0	561,651

Working HMDA emissions = 494,253 scf / year * 1 lbmol HMDA / 379.5 scf * 116.21 lb HMDA / lbmol HMDA * 0.002165 psia / (14.696 + 1.5) psia = 20.2316 lb HMDA/year

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	16.196	16.196
Temperature (F)	140	150
Volume (acf)	802.085	815.46

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)	HMDA (lb/yr)
4,882	150	16.196	4,586	0.19

Uncontrolled HMDA breathing emissions = 4,586 scf/yr * 1 lbmol HMDA / 379.5 scf * 116.21 lb HMDA / lbmol HMDA * 0.002165 psia / (14.696 + 1.5) psia = 0.1877 lb HMDA / year

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED EMISSION RATE (LB/HR)	CONTROL EFFICIENCY (%)	CONTROLLED EMISSIONS RATE (LB/HR)	OPERATING HOURS	ANNUAL EMISSIONS (LB/YR)	ANNUAL EMISSIONS (TONS/YR)
A-24	HMDA FEED TANK SEAL POT KF-851	HMDA	0.0023	99.0%	0.00002	8760	0.2042	0.0001

Due to its continuous operation, the maximum emissions for KF-851 HMDA feed tank seal pot are the same as its average emissions (0.00002 lb/hr).

A-50 - Acetic Acid Storage BD-101

VOC Loading

Working Emissions

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
8,783	95	14.696	8,229
15.4	95	14.696	14.4

Working emissions = 8,229 scf/yr * 1 lbmol acetic acid / 379.5 scf * 60.052 lb acetic acid / 1 lbmol acetic acid * 2.0155% = 26.2437 lb acetic acid / year

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	14.696	14.696
Temperature (F)	80	110
Volume (acf)	802	847

Breathing volume = 847 acf - 802 acf = 45 acf / day * 365 days = 16,425 acf/yr

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
16,425	95	14.696	15,389

Breathing emissions = 15,389 scf/yr * 1 lbmol acetic acid / 379.5 scf * 60.052 lb acetic acid / 1 lbmol acetic acid * 2.0155% = 49.0791 lb acetic acid / year

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED	OPERATING HOURS	ANNUAL EMISSIONS
A-50	ACETIC ACID STORAGE BD-101	VOC - ACETIC ACID	0.0086	8760	0.03766
Flow Rate (gpm)	Flow Rate (acfm)	Temp (F)	Pressure (psia)	Flow Rate (scfm)]

Maximum Emissions

Γ	Pollutant	Maximum Exhaust Rate (scfm)	Controlled Concentration	Maximum Emissions
Ē	VOC - ACETIC ACID	14.40	0.00319	2.76

A-51 - KF-306 Catalyst Addition

Working Emissions

Action	Flow rate (scf)	Temperature (F)	Pressure (psig)	Flow rate (acf)
Total Throughput (per	5,560.34	100	0	5,897.33
Maximum Venting (per	1.89	100	0	2.00

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	14.768	14.768
Temperature (F)	85	115
Volume (acf)	17.38	18.34

Breathing volume = 18.34 acf - 17.38 acf = 0.96 acf / day * 365 days = 350 acf/yr

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
350	100	14.768	327

Powder Emissions

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	OPERATING HOURS	ANNUAL EMISSIONS	AVG ANNUAL EMISSION
	Phosphorous Acid	0.011	0.000012	0.000008	8760	0.000035	0.0000079	
A-51	KF-306 Catalyst Addition	PM	0.315	0.005	0.0945	45.61	0.002155	0.0004920
		PM ₁₀	0.315	0.0025	0.0473	45.61	0.001078	0.0002460

Maximum Emissions

Particulate maximum emissions are assumed to be the same as continuous (0.0945 lb/hr PM and 0.0473 lb/hr PM10). Maximum gas emissions = 15 gpm or 2 acfm or 1.89 scfm * 0.000012 lb/scf = 0.00002268 lb/hr

Redacted Copy

A-54 - KF-270 Water / HMDA Recovery Tank

Assumptions:

Working Emissions

Action	Flow rate (scf)	Temperature (F)	Pressure (psig)	Flow rate (acf)
Total Throughput (per	741,379	140	0	842,476

Breathing Emissions

Parameter	Initial Conditions	Final Conditions
Pressure (psia)	14.696	14.696
Temperature (F)	85	115
Volume (acf)	1738	1834

Breathing volume = 1834 acf - 1738 acf = 96 acf / day * 365 days = 35,040 acf/yr

Flow Rate (acf/yr)	Temp (F)	Pressure (psia)	Flow Rate (scf/yr)
35,040	140	14.696	30,365

Breathing HMDA emissions = 30,365 scf / year * 1 lbmol HMDA / 379.5 scf * 116.21 lb HMDA / lbmol HMDA * 0.001545 psia / 14.696 psia = 0.9775 lb HMDA/year

EMISSION POINT	DESCRIPTION	POLLUTANT	UNCONTROLLED	OPERATING HOURS	ANNUAL EMISSIONS
A-54	KF-270 Water/HMDA tank	VOC - HMDA	0.00284	8760	0.012

Maximum Emissions

POLLUTANT	UNCONTROLLED EMISSION RATE	MAXIMUM RATE FACTOR	MAXIMUM EMISSIONS
VOC - HMDA	0.00284	1.0862	0.00308

A-55 - CM-642 Parts Cleaning Oven

Assumptions:

Compound	Mass (lb)	Formula	MW (lb/lbmol)	Moles (Ibmol)	Mol %
TA	34,782	C8H6O4	166.13	209	30.83%
IPA	13,377	C8H6O4	166.13	81	11.86%
AA	4,707	C6H10O4	146.14	32	4.74%
HMDA	41,479	C6H16N2	116.21	357	52.57%
TOTAL	94,345	a service and service and service	n la serie de l	679	100.00%

Polymer Content			
Carbon	= 8 mol C / mol TA * 30.8% TA + 8 mol C / mol IPA * 11.9% IPA + 6 mol C / mol AA * 4.7% AA + 6 mol C / mol HMDA * 52.6% HMDA	7	
Hydrogen	= 6 mol H / mol TA * 30.8% TA + 6 mol H / mol IPA * 11.9% IPA + 10 mol H / mol AA * 4.7% AA + 16 mol H / mol HMDA * 52.6% HMDA	11	
Oxygen	= 4 mol O / mol TA * 30.8% TA + 4 mol O / mol IPA * 11.9% IPA + 4 mol O / mol AA * 4.7% AA + 0 mol O / mol HMDA * 52.6% HMDA	2	
Nitrogen	= 0 mol N / mol TA * 30.8% TA + 0 mol N / mol IPA * 11.9% IPA + 0 mol N / mol AA * 4.7% AA + 2 mol N / mol HMDA * 52.6% HMDA	1	

	AP-42 Emission Factors				
Byproduct	lb/MMscf natural gas	lb/MMBTU natural gas			
CO	84	0.0824			
SOx	0.6	0.0006			
PM	7.6	0.0075			
PM10	5.7	0.0056			
Methane	2.3	0.0023			
VOC	5.5	0.0054			
Nox	100	0.0980			

C7H1102N + 9.75 O2 = 7 CO2 + 5.5 H2O + NO2					
Component	Rate (lb/min)	MW (lb/lbmol)	Rate (Ibmol/min)		
Polymer combusted	0.01350	141.19	0.0001		
O2 required	0.030	32.00	0.0009		
CO2 created	0.029	44.01	0.0007		
H2O created	0.009	18.02	0.0005		
NO2 created	0.004	46.01	0.0001		

Natural gas flow rate = 350,000 BTU/hr * 1 cuft / 1,000 BTU * 1 hr / 60 min * 1 lb / 23.5 cuft = 0.25 lb/min natural gas

	CH4 + 2 O2 = 0	CO2 + 2 H2O	
Component	Rate (lb/min)	MW (lb/lbmol)	Rate (Ibmol/min)
Natural Gas combusted	0.25	16.04	0.0156
O2 required	1.00	32.00	0.0312
CO2 created	0.69	44.01	0.0156
H2O created	0.56	18.02	0.0312

Total air required = total O2 required * 130% (30% excess) / 21% (21% oxygen in air) Total air required = (0.030 lb/min + 1 lb / min) * 130% / 21% = 6.38 lb/min air Combustion nitrogen = 6.38 lb/min * 0.79 = 5.04 lb/min oxygen Combustion oxygen = 6.38 lb/min * 0.21 = 1.34 lb/min oxygen

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
Polymer	0.01	141.19	0.04
Natural Gas	0.25	16.04	5.91
Nitrogen	5.40	28.01	73.16
Oxygen	1.44	32.00	17.08
Flow rate (scfm)	Temperature (F)	Pressure (psig)	Flow rate (acfm)
96	150	0	113

Natural gas thermal rate = 0.25 lb/min * 23.5 scf/lb * 1020 BTU/scf = 0.0059925 MMBTU/min

Byproduct	lb/MMscf natural gas	lb/MMBTU natural gas	Amount generated (lb/min
со	84	0.0824	0.00049
SOx	0.6	0.0006	0.00000
PM	7.6	0.0075	0.00004
PM ₁₀	5.7	0.0056	0.00003
Methane	2.3	0.0023	0.00001
VOC	5.5	0.0054	0.00003
Nox	100	0.0980	0.00059
Natural Gas Consumed			0.00121

Component	Rate (lb/min)	MW (lb/lbmol)	Flow (scfm)
Polymer	0.000	141.19	0.00
Water	0.57	18.02	12.03
Nitrogen	5.40	28.01	73.16
Oxygen	0.41	32.00	4.89
CO2	0.72	44.01	6.17
CO	0.00049	28.01	0.01
SOx	0.00000	64	0.00
PM	0.00004		
PM ₁₀	0.00003		CONTRACTOR OF C
Methane	0.00001	16.04	0.00
VOC	0.00003		
NOx	0.00499	46	0.04

Flow rate (scfm)	Temperature (F)	Pressure (psig)	Flow rate (acfm)
96	150	0	113

EMISSION POINT	DESCRIPTION	POLLUTANT	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
		Polymer	0.0000	8760	0.00
		CO2	42.9239	8760	188.0
		CO	0.0296	8760	0.130
		SOx	0.0002	8760	0.001
A-55	PARTS CLEANING OVEN CM-642	PM	0.0027	8760	0.012
		PM10	0.0020	8760	0.009
		Methane	0.0008	8760	0.004
		VOC	0.0019	8760	0.008
		NOx	0.2992	8760	1.311

Due to the near-continuous operation of the CM-642 parts cleaning oven, the maximum emissions are the same as the average emissions.

A-70 - KH-751 Preheater Filter

Assumptions:

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
		PM	16,918	0.000015	15.23	99.90%	0.0152	8760	0.07
A-70	PREHEATER FILTER KH-751	PM ₁₀	16,918	0.0000075	7.61	99.80%	0.0152	8760	0.07

A-71 - KH-759 Conveyor Separator

Assumptions:

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
. 71		PM	1,087	0.000015	0.98	99.90%	0.0010	8760	0.004
A-71 CONVEYOR SEPARATOR KH-759	PM ₁₀	1,087	0.0000075	0.49	99.80%	0.0010	8760	0.004	

A-72 - KH-761 Solid Stating Silo Filter

Assumptions:

EMISSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
4.72		PM	10,502	0.000015	9.45	99.90%	0.0095	8760	0.04
A-72	KH-761 SSP SILO FILTER	PM ₁₀	10,502	0.0000075	4.73	99.80%	0.0095	8760	0.04

A-73 - KH-781 Cooler Filter

ptions:									
				CONCENTRATION FACTOR	UNCONTROLLED	CONTROL EFFICIENCY	CONTROLLED EMISSION	OPERATING HOURS	ANNUAL EMISSIONS
SSION POINT	DESCRIPTION	POLLUTANT	FLOW RATE (SCFM)	CUNCENTRATION FACTOR	ONCONTROLLED				ANNOAL EN13310143
A-73	DESCRIPTION KH-781 PELLET COOLER FILTER	POLLUTANT PM	16,719	0.000015	15.05	99.90%	0.0150	8760	0.07

NON-EXISTENT OR ZERO EMISSION SOURCES

1. Anti-foam tank KF-315 contains a low volatility silica-based chemical that is not a source of emissions.

2. Divert water tank KF-554 is a water-based system not contaminated with other pollutants.

3. Condensate return tank KD-1201 receives condensate from the steam system and is not contaminated with other pollutants.

4. Oil water separator KT-1009 receives wash water from floor wash down and is not contaminated with airborne pollutants.

Solvay Augusta Facility-Amodel New Boiler

Boiler, Existing

99.5 MMBtu/hr

Boiler NG Usage

Boiler	99,500,000	Btu/hr
	1021	Btu/scf
	97453	scf/hr

Pollutant	Emission Factor*	Emission	Emission
Tondiant	(lb/10^6 scf)	lb/hr	tpy
CO ₂	120,000	11694	51222
CH ₄	2	0.22	0.982
Lead	0.0005	0.00	0.000
N ₂ O (Uncontrolled)	2.2	0.21	0.939
N₂O (Controlled low-NO _X Burner)	0.64	0.06	0.273
PM (total)	7.6	0.74	3.244
PM (condensible)	7.6	0.74	3.244
PM (filterable)	7.6	0.74	3.244
SO ₂	0.6	0.06	0.256
TOC	11	1.07	4.695
Methane	2.3	0.22	0.982
VOC	5.5	0.54	2.348
NO _X (Small Boiler-low nox)	34.6	3.37	14.76
CO	7.0	0.69	3.0

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

Boiler Fuel Oil Usage

Boiler (Btu/hr)	99,500,000
Boiler (gal/hr)	711

N

/lax hours	per yea	
------------	---------	--

720

POLLUTANT	FACTOR (Ib/1000 gal)	EMISSIONS (lb/hr)	EMISSIONS (tpy)
CO ₂	22,300	15849	5705.61
N ₂ O	0.26	0.2	0.07
PM	2	1.4	0.51
SO ₂	71	50.5	18.17
тос	0.252	0.18	0.06
CH ₄	0.052	0.04	0.01
VOC	0.2	0.1	0.05
NO _X	20	14.2	5.12
СО	5	3.6	1.28

Appendix D Compounding Process Flow Diagrams⁶⁶

Appendix E Compounding Emission Calculations⁶⁷

Existing Emissions from Compouding

						PM Em	issions	voe Em	issions
Equipment	Stack	Air Flow	P&ID	Baghouse	Concen.	(lb/hr)	(tpy)	(lb/hr)	(tpy)
CH-3860/70 D3 Baghouse	S386	10000	10000	Yes	0.001	0.09	0.38		
CH3536 Compounding Pellet Sorter Baghouse Stack	S353	2000		Yes	0.001	0.02	0.08		
CH-3103 D3 Neat Pellet Baghouse	S310	4000	400	Yes	0.001	0.03	0.15		
CH-1860 D2 Baghouse	S186	4000	10000	Yes	0.001	0.03	0.15		
CH-860 Compounding Baghouse	XS74	4000		Yes	0.001	0.03	0.15		
CH-543 Line D Final Product	S543	690			0.001	0.01	0.03		
CH-1543 D2 Compounding Final Product Baghouse	S154	2000		Yes	0.001	0.02	0.08		
CH-3543 D3 Compounding Final Product Baghouse	S354	2000	8000	Yes	0.001	0.02	0.08		
CH-4543 D4 Final Product Baghouse	S454	2000	not built?	Yes	0.001	0.02	0.08		
	S486	10000	not built?	Yes	0.001	0.09	0.38		
	Total					0.35	1.53		

Stacks 1-8

Summary or Emissions from D5

PM Em	issions	VOC Em	issions
(lb/hr)	(tpy)	(lb/hr)	(tpy)
0.56	2.45	0.04	0.18

Summary of D6 and D7 Emissions

Emissions (tpy)

	PM	PM10	PM2.5	SO2	со	NOX	VOC	SAM	LEAD] HAPs
Existing	1.53	1.53	1.53							
D5	2.45	2.45	2.45				0.18]
D6 and D7	11.71	11.71	11.71				4.91]
Total	15.69	15.69	15.69				5.09			

D6 Compounding (ZSK 45 Mc18)

Equip	Process Step	Туре	Control Device	Emis.	Throughput	Uncontrolled	Emission	Uncontrolled	Controlled	Emis. Factor	Controlled
H1	Polymer 1	vacuum	Inherent Filter	1	0.59	6.00E-04	1	3.52E-04	6.00E-04	1	3.52E-04
H2	Polymer 2	vacuum	Inherent Filter	2	0.59	6.00E-04	1	3.52E-04	6.00E-04	1	3.52E-04
H3	Polymer 3	vacuum	Inherent Filter	3	0.59	6.00E-04	1	3.52E-04	6.00E-04	1	3.52E-04
H4	Additive 1	Gravity	Baghouse	4	0.01	8.00E-01	1	4.83E-03	6.00E-04	1	3.62E-06
H1b	Additive 2	Gravity	Baghouse	4	0.12	8.00E-01	1	9.66E-02	6.00E-04	1	7.25E-05
H2b	Additive 3	Gravity	Baghouse	4	0.12	8.00E-01	1	9.66E-02	6.00E-04	1	7.25E-05
H3b	Additive 4	Gravity	Baghouse	4	0.12	8.00E-01	1	9.66E-02	6.00E-04	2	7.25E-05
H5	Additive 5	Gravity	Baghouse	4	0.12	8.00E-01	1	9.66E-02	6.00E-04	1	7.25E-05
H6	Additive 6	Gravity	Baghouse	4	0.12	8.00E-01	1	9.66E-02	6.00E-04	1	7.25E-05
H7	Additve 5&6	Gravity	Baghouse	5	0.24	8.00E-01	1	1.93E-01	6.00E-04	1	1.45E-04
H8	Product Hopper	Vacuum	Baghouse	8	0.28	8.00E-01	1	2.21E-01	6.00E-04	1	1.66E-04
ZSB	Feed Hopper	Vacuum	Baghouse	9	0.24	8.00E-01	2	1.93E-01	6.00E-04	2	1.45E-04
ZSK45	ZSK Fume	Extruder	None	7	0.28	2.61E-01	2	7.23E-02	2.61E-01	2	7.23E-02
ZSK45	ZSK LRVP	Extruder	None	6	0.28	1.04E+00	2	2.89E-01	1.04E+00	2	2.89E-01
							Total New	1.46	lb/hr	0.36	lb/hr
								6.39	tpy	1.59	tpy

Notes:

1. AP-42 Table 6.6.2-2, Product Storage, https://www3.epa.gov/ttn/chief/ap42/ch06/final/c06s06-2.pdf

2. Table 5., Development of Emission Factors for Polypropylene Processing , Journal of the Air & Waste Management Association

https://www.tandfonline.com/doi/pdf/10.1080/10473289.1999.10463782?needAccess=true&

4. Emissons for extrusion are split 20:80 between the feeder fume collectoin and the Vacuum pump.

5. For sources with an inherent filter device, uncontrolled emissions are after the filter.

6. These sources are in contact with graphite powder, an air toxic. The sum of emissions =

1.90E+00 lb/yr. The MER is 290 yr.

D7 Compounding	(ZSK 70 Mc18)
-----------------------	---------------

Equip	Process Step	Туре	Control Device	Emis.	Throughput	Uncontrolled	Emission	Uncontrolled	Controlled	Emis. Factor	Controlled
H1	Master Batch	vacuum	Baghouse	1	0.59	8.00E-01	1	4.70E-01	6.00E-04	1	3.52E-04
H2	Additive pellet	vacuum	Baghouse	1	0.59	8.00E-01	1	4.70E-01	6.00E-04	1	3.52E-04
H3	Polymer Pellet	vacuum	Baghouse	1	0.59	8.00E-01	1	4.70E-01	6.00E-04	1	3.52E-04
H4	Rework	vacuum	Baghouse	1	0.01	8.00E-01	1	4.83E-03	6.00E-04	1	3.62E-06
H5		Gravity	Inherent Filter	2	0.60	6.00E-04	1	3.62E-04	6.00E-04	1	3.62E-04
H6	PPS	Gravity	Inherent Filter	3	0.30	6.00E-04	1	1.81E-04	6.00E-04	1	1.81E-04
H7	PPS	Gravity	Inherent Filter	4	0.30	6.00E-04	1	1.81E-04	6.00E-04	1	1.81E-04
H8	PPS	Vacuum	Inherent Filter	5	0.30	6.00E-04	1	1.81E-04	6.00E-04	1	1.81E-04
H9	PPS	Vacuum	Inherent Filter	5	0.30	6.00E-04	1	1.81E-04	6.00E-04	1	1.81E-04
H10		Vacuum	Inherent Filter	5	0.60	6.00E-04	1	3.62E-04	6.00E-04	1	3.62E-04
H11	PPS	vacuum	Inherent Filter	6	0.30	6.00E-04	1	1.81E-04	6.00E-04	1	1.81E-04
H12	PPS	vacuum	Inherent Filter	6	0.30	6.00E-04	1	1.81E-04	6.00E-04	1	1.81E-04
H13	CaCO3	vacuum	Inherent Filter	6	0.60	6.00E-04	1	3.62E-04	6.00E-04	1	3.62E-04
H14	Fiberglass	Gravity	Baghouse	7	0.60	8.00E-01	1	4.83E-01	6.00E-04	1	3.62E-04
H15	ZSK Feeder	Gravity	Baghouse	8	1.76	8.00E-01	1	1.41E+00	6.00E-04	1	1.06E-03
H16	ZSK Feeder	Gravity	Baghouse	9	0.62	8.00E-01	1	4.94E-01	6.00E-04	1	3.70E-04
H17	ZSK Feeder	Gravity	Baghouse	10	0.30	8.00E-01	1	2.42E-01	6.00E-04	1	1.81E-04
H18	ZSK Feeder	Gravity	Baghouse	11	0.30	8.00E-01	1	2.42E-01	6.00E-04	1	1.81E-04
H19	Product	vacuum	Baghouse	13	0.88	8.00E-01	1	7.05E-01	6.00E-04	1	5.29E-04
H20	Product	vacuum	Baghouse	13	0.88	8.00E-01	1	7.05E-01	6.00E-04	1	5.29E-04
H4b	Rework	Gravity	Inherent Filter	14	0.01	6.00E-04	1	3.62E-06	6.00E-04	1	3.62E-06
H5b	Polymer Pellet	Gravity	Inherent Filter	15	0.59	6.00E-04	1	3.52E-04	6.00E-04	1	3.52E-04
H6b	Additive Pellet	Gravity	Inherent Filter	16	0.59	6.00E-04	1	3.52E-04	6.00E-04	1	3.52E-04
H7b	Master Batch	Gravity	Inherent Filter	17	0.59	6.00E-04	1	3.52E-04	6.00E-04	1	3.52E-04
H21	Additive Powder	Gravity	Inherent Filter	18	0.03	6.00E-04	1	1.81E-05	6.00E-04	1	1.81E-05
H6	PPS Resin	Gravity	Inherent Filter	19	0.30	6.00E-04	1	1.81E-04	6.00E-04	1	1.81E-04
H7	PPS Resin	Gravity	Inherent Filter	20	0.30	6.00E-04	1	1.81E-04	6.00E-04	1	1.81E-04
H8				21			1	0.00E+00	0.00E+00		0.00E+00
H8		Gravity	Inherent Filter	22	0.60	6.00E-04	1	3.62E-04	6.00E-04	1	3.62E-04
H9	Fiberglass	Gravity	Inherent Filter	23	0.60	6.00E-04	1	3.62E-04	6.00E-04	1	3.62E-04
ZSK70	ZSK Fume	Extruder	None	24	1.76	2.61E-01	2	4.60E-01	2.61E-01	2	4.60E-01
ZSK70	ZSK LRVP	Extruder	None	12	1.76	1.04E+00	2	1.84E+00	1.04E+00	2	1.84E+00
							Total New	8.00	lb/hr	2.31	lb/hr
								35.03	tpy	10.12	tpy

Notes:

1. AP-42 Table 6.6.2-2, Product Storage, https://www3.epa.gov/ttn/chief/ap42/ch06/final/c06s06-2.pdf

2. Table 5., Development of Emission Factors for Polypropylene Processing , Journal of the Air & Waste Management Association

https://www.tandfonline.com/doi/pdf/10.1080/10473289.1999.10463782?needAccess=true&

4. Emissons for extrusion are split 20:80 between the feeder fume collectoin and the Vacuum pump.

5. For sources with an inherent filter device, uncontrolled emissions are after the filter.

6. These sources are in contact with graphite powder, an air toxic. The sum of emissions =

3.40 lb/yr. The MER is 290 yr.

VOC Emissions:

Equip	Process Step	Туре	e Control Device En		Throughput	Uncontrolled	Emission	Uncontrolled
EXT1	ZSK Fume	Extruder	None	7	1.76	0.01	1	0.024
EXT1	ZSK LRVP	Extruder	None	6	1.76	0.05	1	0.094
EXT1	ZSK LRVP	Silane	None	6	0.0012	814.14	2	1.004
Total								1.12
				•	•		Total New	4.91

9825.74 lb/yr

Notes:

1. VOC is based on Table 5., Development of Emission Factors for Polypropylene Processing, Journal of the Air & Waste Management https://www.tandfonline.com/doi/pdf/10.1080/10473289.1999.10463782?needAccess=true&

2. Silane methanol/VOC generation from process chemistry model.

Silane usage: 2.4664 lb/hr

WW Concentrations:

vv concentrations.					
Flow	36 gpm	300.42 lb/hr	139.5144 l/min	Table 8 or 9?	
	4.18 kg/yr	3.5 ppmw		N/A	
	5425.08 kg/yr	4544.7 ppmw	5.98 tpy	Table 9	
	0.38 kg/yr	0.3 ppmw		Table 8	
	0.22 kg/yr	0.2 ppmw		Table 8	
	0.66 kg/yr	0.6 ppmw		Table 8	
) 32.51 kg/yr	27.2 ppmw		N/A	
	9.19 kg/yr	7.7 ppmw		N/A	
	11.84 kg/yr	9.9 ppmw		N/A	
MON Group 1:	10,000 ppmw at any flow ra 1,000 ppmw & 1 l/min T8 30,000 ppmw T8 + T9 & 1 tp				
	Sum of Table 8 & 9: Sum of Table 9:	4545.8 ppmv 1.1 ppmv	group 2 group 2		

Appendix F KetaSpire / NovaSpire Process Flow Diagram⁶⁸

Appendix G KetaSpire / NovaSpire Emission Calculations⁶⁹

Solvay received a permit for the PEEK process in 2015 (aka Project Jupiter). Solvay plans to modify this process by adding new equipment and ultimately increasing production capacity. The 2015 permit included a new boiler and oil heater as part of this unit. An oil heater addition is part of this PEEK expansion. The following is a summary of the current, permitted production capacity:

Emission Totals

Emissions lb/hr

	PM	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD	Acetone	HF	HCI	HQ
Process	7.69	7.69	7.69				0.60			184	0.025	0.02	0.08
Boiler	1.39	1.39	1.39	49.19	3.46	13.86	0.52						
Heaters	0.27	0.27	0.27	9.64	1.56	2.71	0.10						
Total	9.35	9.35	9.35	58.83	5.03	16.57	1.22	0.00	0.00	183.50	0.03	0.02	0.08

Emissions (tpy)

	PM	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD	Acetone	HF	HCI	HQ
Process	33.7	33.7	33.7				3.0	0.0	0.0	612.3	0.0	0.0	0.0
Boiler	3.40	3.4	3.4	17.9	7.0	17.2	2.2						
Heaters	0.7	0.7	0.7	3.5	6.5	4.7	0.4						
Total	37.75	37.75	37.75	21.45	13.50	21.93	5.53	0.00	0.00	612.32	0.00	0.00	0.00

								lbs/hr Pe	rmit Basis						
								2014 Permit Control	lled Emmissions (l	lbs/hr)					
		rce ID [Titl	Expansion	Equipment ID	Description	Compounds of interest		Non-VOC solvent	PM	HQ	HF	CO2	Breathing Emmi	s Therminol XP	Syltherm 800
SA-1 SA-2	CD-1		Current		Vent collection condenser vent			54							
SA-2 SA-3	None None		Current	502, PF- 503, PF-504, PF-505, PF-5 PM-645	5 Water slop tanks vent Reactor wash vent	Non-VOC solvent Non-VOC solvent		16.5 4							
SA-4	None		Current	PM-700, PF-701	Wet cake bin vent	Non-VOC solvent		1							
SA-5	CD-2		Current		PS batch column condenser ve	Non-VOC solvent		0.5							
SA-6	BH-18		Current	PM-701, PM-714	Drier	Non-VOC solvent		1	0.02						
SA-7	CD-3			PE-2115, PD-440, PD-2605	Vent collection condenser vent	Non-VOC solvent		54							
SA-8	None			PM-2700, PF-2701	Wet cake bin vent	Non-VOC solvent		1							
SA-9	None			PM-2701, PM-2714, PM-2700	Drier	Non-VOC solvent		1	0.02						
SH-1 SH-2	SC-2 SC-1	HE-1 HE-2	Current	PT-801/PF-801	HCl tank vent	HCI					0.01	50	0.01		
SH-2 SH-3	SC-1 SC-3	HE-2	Current	PT-208/PF-208 PT-2208/PF-2208	Reactor scrubber - PR-200 Reactor scrubber - PR-2200	CO2, HF CO2, HF					0.01 0.01	53 53			
SD-1	BH-1		Current	PH-230/PM-230	Reactor Scrubber - TR-2200	002,111			0.03		0.01	55			
SD-2	BH-2		Current	PH-235/PM-235					0.02						
SD-3	BH-3		Current	PH-240/PM-240	FBP/Na2CO3 sack unloading ve	DFBP			0.16						
SD-4	BH-4	DE-4	Current	PH-250/PM-250	HQ sack unloading vent	HQ			0.06	0.06					
SD-5	BH-3		Current	PH-260/PM-260	Na2CO3 sack unloading vent	Na2CO3			0.00						
SD-6	BH-6		Current	PH-270/PM-270					0.02						
SD-7	BH-7 BH-8	DE 9	Current	PH-265 PH-245	DERP convey list wat	DFBP			0.10						
SD-8 SD-9	BH-8 BH-9	DE-8 DE-8	Current Current	FIT-240	DFBP convey line vent HQ convey line vent	HØ DERb			0.20 0.06	0.06					
SD-10	BH-10	220	Current	PH-241/PF-242, PF-260	DFBP bin vent	DFBP			0.10	0.00					
SD-11	BH-11	DE-11	Current	PH-251/PF-252, PF-260	HQ bin vent	HQ			0.05	0.06					
SD-12	BH-12		Current	PH-261/PF-262					0.05						
SD-13	BH-13		Current	PM-307					0.32						
SD-14	BH-14			/PF-413/PF-642/PH-411/PH-413/											
SD-14	BH-15			/PF-413/PF-642/PH-411/PH-413/					0.86						
SD-14	BH-16 BH-17			/PF-413/PF-642/PH-411/PH-413/		Deadurt			0.12						
SD-17 SD-19	BH-17 BH-19		Current Current	PM-710, PM-707 PF-702/PF-703, PH-702	Product packaging Product storage bins	Product Product			0.12 0.10						
SD-21	BH-21		Current	PH-208/PM-208	Troduct storage bins	rioduct			0.20						
SD-22	BH-22		Current	PF-260	Monomer bin vent	DFBP, HQ			0.15	0.06					
SD-23	BH-23		Current	PM-755	Powder product collector	Product			0.11						
SD-24	BH-23			PM-765	Powder product collector	Product			0.11						
SD-25	BH-25			PD-286		DFBP			0.10						
SD-26	BH-26			PH-2241/PF-2242	DFBP bin vent	DFBP			0.10						
SD-27	BH-27			PH-2251/PF-2252		HQ			0.05	0.06					
SD-28 SD-29	BH-28 BH-29			PF-2260 PH-2261/PF-2262	HQ bin vent	DFBP, HQ			0.15 0.05	0.06					
SM-1	None		Current	PF-210					0.02						
SM-2	None		Current	PF-211					0.02						
SM-3	None		Current	PD-202					0.60						
SM-4	None		Current	PD-203					0.15						
SM-5	None		Current	PD-204					0.04						
SM-7	None		Current	PD-617										0.1	20.00
SM-8 SM-9	None None		Current	PD-1101	Blowdown tank										0.1
SM-10	None		Current	PD-1102 PF-286	Expansion tank				0.10						0.1
SM-10	None			PF-2210		DPS			0.10						
SM-12	None			PD-2203		DFBP			0.15						
SM-13	None			PD-2204					0.04						
SB-1	None	BE-1	Current	PM-1100	Hot Oil Heater PM-1100	CO, NOx, PM, SO2, CO2									
SB-2	None	BE-2	Current	PM-1000	Boiler	CO, NOx, PM, SO2, CO2									
SB-3	None	BE-3	ALC: NOT	PM-3100	Hot Oil Heater PM-3100	CO, NOx, PM, SO2, CO2									
Total							lbs,	/hr 133	4.45	0.36	0.02	1	.06 0.0	1 0.	1 0.:
							103/		4.40	0.50	0.02			- 0.	_ 0
			Notes:												
				ng provides a summary of revised											
			The air flow	was multiplied by the EPA conce											
			00 1	Velocity	Stack Area	Volume (cf/min)	Emissions								
			SD-4 SD-8	2283	0.3491	797	0.0683								
			SD-8 SD-9	925	0.0218	20	0.0017								
			SD-9	315	0.0218	20 15	0.0017								
			SD-22	315	0.0491	15	0.0013								
			SD-27	315	0.0491	15	0.0013								
			SD-28	315	0.0491	15	0.0013								
								1							

ce ID [Titl Expansion		lbs/hr 2023 Permit Controll Non-VOC solvent	led Emmissions (I PM	bs/hr) HQ	HF	CO2	Breathing Emmis	Thorminal VP	Sulthorm 800	2000	lbs/yr Peru 2014 Permit Controlle Non-VOC solvent	mit Basis ed Emmissions (It PM	s/yr) HQ	HF	CO2	Breathing Emmi	s Therminol XP	Sultherm 800
Current		68	PIVI	пц	nr	02	breatning crimis	merminor XP	Syntherin 800		315360	PIVI	нц	Hr	02	preating crimi	s merminor AF	
	502, PF- 503, PF-504, PF-505, PF-5										56940							
Current	PM-645	8									35040							
Current	PM-700, PF-701	2									8760							
Current		1									2628							
Current		2	0.04								8760	88						
	PE-2115, PD-440, PD-2605	68									315360							
	PM-2700, PF-2701 PM-2701, PM-2714, PM-2700	1	0.03								8760 8760	88						
HE-1 Current		1	0.03				0.02				8700	80				2		
HE-2 Current		1			0.0125	66.25	0.02							2	317250	-		
057925	PT-2208/PF-2208				0.0125	66.25								2	317250			
Current	PH-230/PM-230		0.06									88						
Current	PH-235/PM-235		0.04									88						
Current	PH-240/PM-240		0.32									701						
DE-4 Current	PH-250/PM-250		0.12	0.07								263	263					
Current			0.00									θ						
Current		1	0.04							1		88						
Current		1	0.20							1		438						
DE-8 Current		1	0.40	0.0017						1		876	262					
DE-8 Current			0.12	0.0017						1		263	263					
Current		1	0.13	0.0013								438 219	263					
DE-11 Current Current		1	0.06 0.06	0.0013								219	205					
Current			1									1402						
	/PF-413/PF-642/PH-411/PH-413/	/	-									1101						
	/PF-413/PF-642/PH-411/PH-413/		1.72									3767						
	/PF-413/PF-642/PH-411/PH-413/											and a second						
Current			0.24									526						
Current	PF-702/PF-703, PH-702		0.20									438						
Current	PH-208/PM-208		0.25									876						
Current	PF-260		0.19	0.0013								657	263					
Current	PM-755		0.11									480						
	PM-765		0.11							-		480						
	PD-286		0.20									438						
	PH-2241/PF-2242		0.13									438						
	PH-2251/PF-2252		0.06	0.0013								219	263					
	PF-2260		0.19	0.0013								657	263					
	PH-2261/PF-2262		0.06									219						
Current			0.04 0.04									88 88						
Current Current			1.20									2628						
Current			0.19									657						
Current			0.05									175						
Current								0.2									876	
Current									0.2									876
Current									0.2									876
	PF-286		0.20									438						
	PF-2210		0.03									88						
	PD-2203		0.19									657						
	PD-2204		0.05									175						
BE-1 Current																		
BE-2 Current	PM-3100	 																
									(Area)			10/		-		500		c
BE-2 Current		184	7.69	0.08	0.025	132	.5 0.02	0.2	0.	4 lbs/y	760368	19448	1578	4	634	500	2 87	6 1752
BE-2 Current		1																
BE-2 Current BE-3																		
BE-2 Current BE-3 Notes:	ving provides a summary of revised																	
BE-2 Current BE-3 Notes: The followi																		
BE-2 Current BE-3 Notes: The followi	w was multiplied by the EPA concer																	
BE-2 Current BE-3 Notes: The followi																		
BE-2 Current BE-3 Notes: The followi The air flow	w was multiplied by the EPA concer Velocity																	
BE-2 Current BE-3 Notes: The followi The air flow SD-4	w was multiplied by the EPA concer Velocity																	
BE-2 Current BE-3 Notes: The followi The air flow SD-4 SD-8	w was multiplied by the EPA concer Velocity 2283 925																	
BE-2 Current BE-3 Notes: The followi The air flow SD-4 SD-9 SD-11 SD-22	w was multiplied by the EPA concer Velocity 2283 925 315 315																	
BE-2 BE-3 Notes: The followi The air flow SD-4 SD-9 SD-11 SD-22 SD-27	w was multiplied by the EPA concer Velocity 2283 925 315 315 315 315																	
BE-2 Current BE-3 Notes: The followi The air flow SD-4 SD-9 SD-11 SD-22	w was multiplied by the EPA concer Velocity 2283 925 315 315 315 315																	
BE-2 Curre BE-3 Notes: The foll The air SD-1 SD-1	flo 4 8 9	flow was multiplied by the EPA concer Velocity 4 2283 8 9 925 1 315	4 2283 8 9 925 1 315	flow was multiplied by the EPA concer Velocity 4 2283 8 9 925 1 315	Velocity 4 2283 8 9 925 1 315	Velocity 4 2283 8 9 925 1 315	Velocity 4 2283 8 9 925 1 315	4 2283 8 9 9 925 1 315	4 2283 8 9 925 1 315	4 2283 8 9 9 925 1 315	4 2283 8 9 9 925 1 315	4 2283 8 9 9 925 1 315	4 2283 1 8 1 1 9 925 1 1 315 1	4 2283 8 9 9 925 1 315	4 2283 8	4 2283 8	4 2283 8	8 9 925 1 315

No. 100 No. 100 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>lbs/yr</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>tns/yr</th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th></t<>						lbs/yr								tns/yr							1
Alt But But </td <td>Charle ID</td> <td></td> <td></td> <td></td> <td>Frank ID</td> <td>1</td> <td></td> <td></td> <td></td> <td>593</td> <td></td> <td></td> <td>c 111</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6 HI 800</td>	Charle ID				Frank ID	1				593			c 111								6 HI 800
11 1010 1011 1012 1014 <td></td> <td></td> <td>rce ID [liti</td> <td></td> <td></td> <td></td> <td>PM</td> <td>HQ</td> <td>HF</td> <td>CO2</td> <td>HCI</td> <td>Therminol XP</td> <td>Syltherm 800</td> <td></td> <td>PM</td> <td>HQ</td> <td>HF</td> <td>CO2</td> <td>Breathing Emmi</td> <td>5 Therminol XP</td> <td>Syltherm 800</td>			rce ID [liti				PM	HQ	HF	CO2	HCI	Therminol XP	Syltherm 800		PM	HQ	HF	CO2	Breathing Emmi	5 Therminol XP	Syltherm 800
Interpretation State State<														1							
Interpretation Market in the problem in the proble																					
Alt Alt <td></td>																					
here Norme <																					
A B F P <td>SA-6</td> <td>BH-18</td> <td></td> <td>Current</td> <td></td> <td></td> <td>198.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SA-6	BH-18		Current			198.00								0.10						
1.50 0.10 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 1.61 0.10 0.200 0.200 0.200 0.200 0.200 0.200 0.200 1.61 0.10 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	SA-7	CD-3			PE-2115, PD-440, PD-2605	473040															
140 150 1	SA-8	None			PM-2700, PF-2701	13140								7							
here 1	SA-9	None			PM-2701, PM-2714, PM-2700	13140	132.00							7	0.07						
14 1 </td <td>SH-1</td> <td>SC-2</td> <td>HE-1</td> <td>Current</td> <td>PT-801/PF-801</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00225</td> <td></td> <td></td>	SH-1	SC-2	HE-1	Current	PT-801/PF-801						4.5								0.00225		
DAL DAL Conver NEXPENDED Mile			HE-2	Current					3								0.0015				
10 10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>475875</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0015</td><td>237.9</td><td></td><td></td><td></td></th<>									3	475875							0.0015	237.9			
18-1 18-3 Correct Periodity 200 00.7 5.2.9 0.2.9 <td></td>																					
Alia Bit Bit </td <td></td>																					
and bit image			DF 4					0.20													
aim bit const model mod			DE-4					0.30								1.50E-04					
his with </td <td></td>																					
Index																					
Image			DE-8																		
Hole Hole<								0.01								3.79E-06					
141 010 0.00 <td></td> <td></td> <td></td> <td></td> <td>PH-241/PF-242, PF-260</td> <td></td>					PH-241/PF-242, PF-260																
shift insite insi			DE-11					0.01								2.90E-06					
101 101 011 <td>SD-12</td> <td>BH-12</td> <td></td> <td>Current</td> <td></td>	SD-12	BH-12		Current																	
shift with with with with with with with with	SD-13	BH-13		Current	PM-307		3155														
101 <td>SD-14</td> <td>BH-14</td> <td></td> <td>Current</td> <td>/PF-413/PF-642/PH-411/PH-413/</td> <td>/</td> <td></td>	SD-14	BH-14		Current	/PF-413/PF-642/PH-411/PH-413/	/															
1917 1917 1917 1918	SD-14	BH-15		Current	/PF-413/PF-642/PH-411/PH-413/	/	8475.75								4.24						
91-9 91-9 91-7	SD-14	BH-16		Current	/PF-413/PF-642/PH-411/PH-413/	/															
10-20 10-20 10-20 12-20	SD-17	BH-17		Current			1183.50								0.59						
10-20 №1-2 №1-2 №20 0.0 0.0 0.0 0.0 10-20 №2 №2 №2 №2 №2 0.0 0.0 0.0 10-20 №2 №2 №2 №2 0.0 0.0 0.0 0.0 10-20 №2 №2 №2 №2 0.0 0.0 0.0 0.0 0.0 10-20 №2 №2 №2 №2 0.0 0.0 0.0 0.0 0.0 0.0 10-20 №2 №2 №2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10-20 №2 №2 0.0 <td></td>																					
101-20 00-rest MP/35 400-7																					
10-19 10-19								0.01								2.90E-06					
1010 1010 1026 1026 1026 1027 10100 1010 1010 1010				Current																	
91-29 91-29 91-29 91-29 91-29 92-29																					
90-2 90-2																					
50-20 81-2 91-20 92-70 <								0.01								2.005.05					
90-9 91-9 92-9 90-20/49 92-20/49																					
94-8 100- 0.0 0.0 0.0 0.0 0.0 0.0 94-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94-5 0.00 0.00 0.00 0.00 0.00 0.00 94-5 0.00 0.00 0.00 0.00 0.00 0.00 94-5 0.00 0.00 0.00 0.00 0.00 0.00 94-5 0.00 0.00 0.00 0.00 0.00 0.00 94-10 0.00 0.00 0.00 0.00 0.00 0.00 94-10 0.00 0.00 0.00 0.00 0.00 0.00 94-10 0.00 0.00 0.00 0.00 0.00 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.01</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.902-06</td> <td></td> <td></td> <td></td> <td></td> <td></td>								0.01								2.902-06					
900 900 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0 904 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0 90,0				Current																	
shead Nore Current PD202 991.00																					
she will will will will will will will wil	SM-3	None																			
5N8 Nore Orrent 'P0-1010 917 SN4 Nore - Current 'P0-1020 917 SN4 Nore - PF-280 985.0 - S SN41 Nore - PP-2204 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN41 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN43 Nore - PP-2804 985.0 - S - S SN44 Nore - PP-2804 985.0 - S - S SN45 - Nore - Nore - S - S SN45 - Nore - S - S - S SN45 - Nore - S - S - S SN45 - S - S - S - S SN45 - S - S - S - S	SM-4	None		Current	PD-203		985.50														
Mone Gurrent P0-101 P0-102	SM-5	None		Current	PD-204		262.50								0.13						
M-9 Current $0-102$	SM-7	None		Current	PD-617							1971								0.99	
M-10 M-2 M-2 M-26 M-95.50 M-12	SM-8	None		Current	PD-1101								1971								0.99
M-11 M-2 M-2 PF-220 PB-220 PB-230 PB-230 <th< td=""><td></td><td>None</td><td></td><td>Current</td><td>PD-1102</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1971</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.99</td></th<>		None		Current	PD-1102								1971								0.99
Sh12 None U PD-203 985.50 0.13 Sh1 None E Current PM-100 0.13																					
M-10 0.07 0.13 SP-10 Nore 8E-1 Current PM-100																					
S8:1 None BE:1 Current PM:100 S9:2 None BE:2 Current PM:100 S9:3 None BE:3 Current PM:100 S9:3 None BE:3 Current PM:100 Total The following provides asymmary of revised ray multiplied to the EPA concert Velocity Velocity Velocity SD-4 2283 SD-4 2283 SD-4 315 Velocity SD-4 2283 SD-4 315 Velocity																					
SB-2 Current PM-1000 SB-3 None BE-3 Current PM-100 SB-2 None BE-3 Current PM-3100 SC SC Total F S2200 S2300 O.33 6 951750 4.5 1971 3942 612 19.11 1.65E-04 0.003 475.875 0.00225 0.99 Total F Note: SC							262.50								0.13						
SB-3 Note BE-3 PM-3100 SB-3 Note Image: PM-3100 Image: PM-310																					
Image: Control in the following provides a summary of revised to the air flow was multiplied by the EPA concert in the following provides a summary of revised to the air flow as multiplied by the EPA concert in the following and t				Current																	
Notes: The following provides a summary of revised The air flow was multiplied by the EPA concer The air flow was mu	30-3	NOTE	DL-3		PINI-5100																
Notes: The following provides a summary of revised The air flow was multiplied by the EPA concer The air flow was mu	Total					1224648	38221.50	0.33	6	951750	4.5	1971	394	2 612	19.11	1.65E-04	0.003	475.8	875 0.0022	5 0.9	9 1.97
The following provides a summary of revised in the inflow was multiplied by the EPA concert velocity v														_							
The air flow was multiplied by the EPA concer Velocity SD-4 2283 SD-3 SD-9 925 SD-10 315 SD-22 315 SD-27 315				Notes:																	
Velocity SD-4 2283 SD-4 2283 SD-4 2000 SD-9 925 SD-11 315 SD-22 315 SD-27 315				The followi	ng provides a summary of revised																
SD-4 283 SD-4				The air flow		h															
SD-8 SD-9 925 SD-11 315 SD-22 315 SD-27 315																					
SD-9 925 SD-11 315 SD-22 315 SD-27 315					2283																
SD-11 315 SD-22 315 SD-27 315																					
SD-22 315 SD-27 315																					
SD-27 315																					
				00-20	212																

Solvay Augusta Facility-Project Jupiter Boiler and Hot Oil Heater

Boiler, Existing	97 MMBtu/hr
Hot Oil Heaters (2)	9.5 MMBtu/hr

Boiler NG Usage

Boiler	97,000,000	Btu/hr
	1021	Btu/scf
	95005	scf/hr

Dellutent	Emission Factor*	Emission	Emission
Pollutant	(lb/10^6 scf)	lb/hr	tpy
CO ₂	120,000	11401	49935
CH ₄	2	0.22	0.957
N ₂ O (Uncontrolled)	2.2	0.21	0.915
N ₂ O(Controlled low-NO _X Burner)	0.64	0.06	0.266
PM (total)	7.6	0.72	3.163
PM(condensible)	7.6	0.72	3.163
PM (filterable)	7.6	0.72	3.163
SO ₂	0.6	0.06	0.250
TOC	11	1.05	4.577
Methane	2.3	0.22	0.957
VOC	5.5	0.52	2.289
NO _X (Small Boiler-low nox)	32	3.04	13.32
СО	15	1.43	6.2

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

Boiler Fuel Oil Usage

Boiler (Btu/hr)	97,000,000
Boiler (gal/hr)	693
Max hours per year	720

POLLUTANT	FACTOR	EMISSIONS	EMISSIONS
POLLUTANT	(lb/1000 gal)	(lb/hr)	(tpy)
CO ₂	22,300	15451	5562.26
N ₂ 0	0.26	0.2	0.06
PM	2	1.4	0.50
SO ₂	71	49.2	17.71
TOC	0.252	0.17	0.06
CH ₄	0.052	0.04	0.01
VOC	0.2	0.1	0.05
NO _X	20	13.9	4.99
CO	5	3.5	1.25

Hot Oil Heater NG Usage (1 new and 1 existing)

Hot Oil Heater	9,500,000 Btu/hr (each)
	1021 Btu/scf
	9305 scf/hr (each)

Pollutant	Emission Factor* (Ib/10^6 scf)	Emission (x2) Ib/hr	Emission tpy
CO ₂	120,000	2233.10	9780.999
CH ₄	2	0.04	0.187
N ₂ O (Uncontrolled)	2.2	0.04	0.179
N ₂ O(Controlled low-NOx Burner)	0.64	0.01	0.052
PM (total)	7.6	0.14	0.619
PM(condensible)	7.6	0.14	0.619
PM (filterable)	7.6	0.14	0.619
SO ₂	0.6	0.01	0.049
ТОС	11	0.20	0.897
Methane	2.3	0.04	0.187
VOC	5.5	0.10	0.448
NO _X (Small Boiler-Uncontrolled)	50	0.93	4.08
СО	84	1.56	6.847

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

Hot Oil Heater Fuel Oil Usage (1 new and 1 existing)

HO Heater (Btu/hr)	9,500,000
HO Heater (gal/hr)	68
Max hours per year	/20

POLLUTANT	FACTOR	EMISSIONS (x2)	EMISSIONS
POLLUTANT	(lb/1000 gal)	(lb/hr)	(tpy)
CO ₂	22,300	3026.43	1089.51
N ₂ O	0.26	0.04	0.01
PM	2	0.27	0.10
SO ₂	71	9.64	3.47
TOC	0.252	0.03	0.01
CH ₄	0.052	0.01	0.00
VOC	0.2	0.03	0.01
NO _X	20	2.71	0.98
CO	5	0.68	0.24

Appendix H Sulfone Process Flow Diagram⁷⁰

Appendix I Sulfone Emissions Calculations⁷¹

Source No			Total VOC [tons/yr]	Total VOC [tons/yr]
000100110.	Equipment No.	Description	1996 Permit	Calculated @ 80MM
SA1	LD-107	SO3 Acid Scrubber	0.000	0.000
S1B	LD-1621	Scrubber Neutralizer	0.000	0.000
S2A	LE-114	MCB Storage Tank Condenser	1.410	0.957
S3A	LF-121	50% Caustic Storage tank	0.000	0.000
S3B	LF-124	20% Caustic Storage tank	0.000	0.000
S4A	LE-208	Reactor Srubber Condenser	1.930	0.349
S4B	LE-210	Reactor Cooler Condenser	1.930	0.010
S5A	LE-309	Dehydration Tower Condenser	1.930	1.734
S5B	LE-330	Recycle MCB Storage Tank Condenser	0.640	0.336
S6A	LE-405	Extraction Feed Tank Condenser	0.700	0.133
S6B	LD-430	Sulfone Extractor	1.410	0.260
S6C	LE-467	LT-460 Scavenger Conc Tower Condenser	1.930	1.038
S6D	LD-425 (Eliminated 2014)	Recycle Water Tank	0.190	
S6E	LD-435	Make-up Water Tank	0.000	1.190
S6F	LE-477	Product Dehydration Vent Condenser	N/A	1.090
S7B	LE-448	445 / 455 Karr Columns Vent Condenser	2.020	1.136
S488	LE-488	New Karr Columns Vent Condenser	N/A	1.136
S7C	LE-576	Crude Crystallizer Vacuum After-Condenser	N/A	3.462
S7A	LE-680	Prim Crystal and Prod Dist Vent Condenser	2.940	4.974
S7D	LE-679	Scavenger I and 790 Vent Condenser	N/A	3.343
S368	LE-368	MIS Cracking Vent Condenser	N/A	0.586
S347	LE-347	New MIS Cracking II Vent Condensei	N/A	0.586
S580	LE-580	New 681 / 781 / 881 Tower Vent Condenser	N/A	1.707
S8A	LT-750	Waste Heat Boiler Caustic Scrubber	0.930	0.000
S8B	Scrubber Sump	WHB Scrubber Neutralizer	0.000	
S9A	Eliminated 3/2/02	Product Flaker & Grinder Baghouse	0.000	
S9B	Eliminated 3/2/02	Day Bin Baghouse	0.000	
S9C	Eliminated 3/2/02	Day Bin Baghouse	0.000	
S9D	LM-913	Storage Bin Baghouse	0.000	
S9E	LM-914	Storage Bin Baghouse	0.000	
S9F	LM-916	Product Sacking Baghouse	0.000	
S10A	LF-1601	Organic Wastewater EQ Tank	3.070	5.527
S10B	LF-1618 out of service	Wastewater Holding Tank	0.000	
S10C	LD-1631	Wastewater Neutralization Tank	0.000	
S11A	LP-134	Carbonate Mix & Storage Baghouse	0.000	
S13A	LH-1700 (Eliminated)	Vent Bag Filter for Storage Melt Tank	0.000	
S13B	LH-1754	Prilling Baghouse	0.000	
S13C	LH-1710	Granulation Baghouse	0.000	
S13D	LH-1722	Product Cooling Baghouse	0.000	
S13E	LF-970	Sulfone Storage Tank (atmospheric)	0.000	
S13F	LF-980 (New)	Sulfone Storage Tank (atmospheric)		
S13G	000 (iton)	callono otorago rank (atmospherio)		
S13H				
51511		TOTAL	21.030	29.554

3702 Clanton I						SHEET #	1 of 18
Augusta, Geoi	gia 30906					DATE	6/12/2023
JOB NAME	80MM Sulfone Momner Expa	COM	COMPUTED BY				
SUBJECT	VOC calculations for Revised	СН	ECKED BY	NJA			
Purpose:	Complete VOC calcs for all M	CB controlled emission	n sources in the S	ulfone Monome	er Unit pe	r revised 80	MM material baland
ssumptions:	LF-115 is only used for storage Only N2 and MCB in storage Ideal Gas Law and Raoult's L N2 is noncondensible and liq LF-111/115 pressure is atmos MCB Vapor Pressure @ 22°C MCB Vapor Pressure @ 10°C	tank. aw apply. uid content in storage t pheric (P = 760 mmHg = <u>10.06</u> mmH	anks is 100% MC). Ig	<u> </u>	illing tank	during tru	ck unload.
Calculations							
	Source No. S2A Equipment No. LE-114	MCB Storage Tai Vent Condenser		LF-111 and LF-	-115		
	Equipment No. EE-114	vent Condenser	IOI MCD		LF-111	LF-115	
	From TANKS: To	al emissions were calcu	Working Breathing	2759 824	0 403	lbs/yr lbs/yr	
	Total Emisions to control dev Inlet to Assume inlet temp is Outlet temp is	Ų	plus working los 985.8 lbs/yr 0.5 lbs/hr	sses from LF-11	1 only, sin	ce LF-115 is	storage only.
		Calculated out	lculated condens let emissions from ly emissions from	n control point		lbs/hr tons/yr	

3702 Clanton Augusta, Geo						SHEET #	2 of 18
Augusta, Geo	1918 20900					DATE	6/12/2023
JOB NAME	80MM Sulfone Momner Expansion	COMPUTED BY	SMB				
SUBJECT	VOC calculations for Revised Title	CHECKED BY	NJA				
Purpose:	Complete VOC calcs for all MCB c	ontrolled	emission source	es in the S	Sulfone Monor	ner Unit per revised 80MI	M material bala
Assumptions:	Ideal Gas Law and Raoult's Law a MCB Vapor Pressure @ 70°C = MCB Vapor Pressure @ 10°C =	99.6	<mark>0</mark> mmHg 3 <mark>3</mark> mmHg				
Calculations	: Source No. S4A Equipment No. LE-208		Scrubber Conde Indenser for MC				
	i i i	С					
	LE-208 Calcs: Inerts: Instruments	# 5	FT^3/hr 10	Max 50 0.111 3.1	CFH lbmole/hr lbs/hr	@ 70°C	
	Total inert inlet into LE	-208 =		Max 0.11	lbmole/hr		
 LFI-206A LFI-206B LFI-2011 LFI-2012 LFI-2013 	Mole fraction of MCB i Mole fraction of inets in Max MCB entering LE-	n vapor	0.13 0.87 0.017 ľ	bmole M0	CB or	1.9 lbs/hr	

3702 Clanton I Augusta, Geor	Rd.	Special/1					SHEET #	3 0	f 18
Augusta, Geol	igia 50500						DATE	6/12,	/2023
JOB NAME	80MM Sulf	fone Momner Expansion				COM	PUTED BY	SI	ИB
SUBJECT	VOC calcu	lations for Revised Title	V Permit Not	ification (continued)	CH	ECKED BY	N	JA
Purpose:	Complete '	VOC cales for all MCB co	ntrolled emis	sion sources in the	Sulfone Monom	ner Unit per revised 80MM	material ba	lance.	
-	-	erates at ~10 IN W.C.					n=PV/RT		
	-	space in tank breathing					LD-207		
		illed twice per year (to 33 np range is between 30-7	,				moles, n 0.7295253	Temp 10	Vap Press 4.826597
		le per day; 365 per year p					0.7046551		8.859338
Calculations:	1 2	Source No. S4B		oler Condenser			0.6814248	30	15.51387
	Equ	ipment No. LE-210		enser for MCB; exit t	emp is 10C		0.6596772		
		De lles has a th in a	moles/hr av	vg			0.6392748	50	
		Daily breathing Startup (averaged)	0.0033 0.0001				0.6200965 0.6020355	60 70	
	Total iner	t inlet flow into LE-210 =		moles/hr av	g		0.5849967		146.6770
			0.3407	moles/hr max	0	Start up	0.3407124		15.51387
		0.341 lbmoles/hr	MAX	Moleflow	Mass flow			Moleflow	Mass flow
		30C	mole frac	Ibmoles/hr	lbs/hr	0.022495067 ACFM		Ibmoles/hr	
		MCE		0.020 0.007 0.980 0.334	0.783 9.345	30C MCB Inerts	0.020 0.980		
		TOTAL	, U	1 0.341	10.128	TOTAL	0.000		
		LE-210 Outlet 10C	MAX mole frac	Moleflow Ibmoles/hr	Mass flow lbs/hr	LE-210 Outlet 10C		Moleflow lbmoles/hr	Mass flow
		MCE		0.006 0.002	0.240	MCB	0.006		
		Inerts		0.994 0.334	9.345	Inerts	0.994		
		TOTAL		1 0.336	9.585	TOTAL	1	3.34E-03	9.52E-0
		Rate depend	lence of this s	0	B exiting LE-210 B exiting LE-210 gible as produc	0.0105 tons/yr			6.93E-0
		Source No. S5A	Dehydratio	n Tower Condenser			МСВ	water	1
	Equ	ipment No. LE-309	LE-308 after			Azeotrope 70C	0.17	0.83	
			MOD	American	\\/atax	269 mmHg	0.175	0.825	
		Vapor pressure @ 40C	MCB 2	Azeotrope 6.04 64	Water 4.6 55.4	Azeotrope 40C 64.6 mmHg	0.175	0.825	
		Vapor pressure @ 10C			1.0 9.21		0.185	0.815	
	Temp in	40 C				11 mmHg	MOLE FRA	ACS	
	Inert Flow	20 flow meters @ 15CF	•	des new LR-395); 7	gas seal pump	e			
		314 CFH Max R 0.763 lbmoles/hr	ate of inerts	Moleflow	Mass flow	157 CFH Avera 0.381 lbmoles/hr	ge Rate of I	nerts Moleflow	Mass flow
		0.703 IDITIOLES/III	mole frac	lbmoles/hr	lbs/hr	2.970997171 ACFM	mole frac	lbmoles/hr	lbs/hr
		MCE		0.030	3.34	MCB	0.034	0.015	1.67
		Azeo(H2O) 0.070	0.061	1.094	Azeo(H2O)	0.070	0.030	0.547
		Azeo(MCB	,	0.013	1.450	Azeo(MCB)		0.006	0.725
		Inerts TOTAL	s 0.881 1.000	0.763	21.35 27.233	Inerts TOTAL	0.881	0.381	10.68 13.617
		IUIAL	1.000	0.000	21.200	IUIAL		0.400	10.017
	Temp Out	10 C		Moleflow	Mass flow			Moleflow	Mass flow
	Outlet flow		mole frac	lbmoles/hr	lbs/hr			lbmoles/hr	lbs/hr
		MCE Azoo(H2O		0.005	0.56	MCB	0.006	0.002	0.28
		Azeo(H2O Azeo(MCB	,	0.009 0.002	0.166 0.235	Azeo(H2O) Azeo(MCB)		0.005 0.001	0.083 0.117
		Inerts	-	0.763	21.35	Inerts		0.381	10.68
		TOTAL	1.000	0.779	22.308	TOTAL	1.000	0.389	11.154
						May MCP million LE 200	0.702	lbo /br	0.00
					Max volu	Max MCB exiting LE-309 metric flow exiting LE-309		lbs/hr ACFM	0.83
						metric flow exiting LE-309		ACFM	
					0	ting LE-309 (1/2 max rate)		tons/yr	

	Rd. rgia 30906					SHEET #	4 of	18
,						DATE	6/12/2	2023
JOB NAME	80MM Sulfone Momner Expansio	COMPUTED BY		SM	SMB			
SUBJECT	VOC calculations for Revised Titl	CH	IECKED BY	NJ	4			
Purpose:	Complete VOC calcs for all MCB	controlled emission so	urces in the Sulfone M	lonomer	Unit per	revised 80M	IM material	balance.
Assumptions:	Pressure control setpoint allows s Emissions calculations are based 50% Level change during decant Pressure increases to 2 psig setpo	on an average number			veek)	n=PV/RT		
Calculations:	Conservative average temp of 20		LD-310/314 moles, n	4 Temp	Vap Pre			
culculutions.	Source No. S5B		3.52333379	10	4.8266			
	Equipment No. LE-330	Vent Condenser for I	MCB for LD-310 & LD		hour>	3.46223552 3.40322014		6.57992 8.85934
				•		3.34618293	25	11.789
	Calculate Average Breathing for of 52 Decants per year	lecanting				3.29102607	30	15.5139
	3.4032201 moles of gas per deca 2 hrs, Time to perform a 353.9349 Total moles of gas em 8760 total hours per year 0.0808071 avg lbmoles/hr for ye	n decant mitted/yr						
Temp in	20 C							
	1.702 lbmoles/hr MAX	Moleflow Mass flow	0.0808 lbmoles/ AVG	'nr		Moleflow	Mass flow	
	mole frac	lbmoles/hr lbs/hr	0.5191974 ACFM			lbmoles/hr	lbs/hr	
	MCB 0.01 Inerts 0.98			MCB Inerts	0.012 0.988	0.0009 0.0799		45267.0
		1 1.7016 49.32			1			
Temp out	10 C	Moleflow Mass flow	/			Moleflow	Mass flow	
Outlet flow	mole frac MCB 0.006	lbmoles/hr lbs/hr 4 0.0107 1.21	n	m MCB	nole frac 0.0064	lbmoles/hr 0.0005		25049.7
	Inerts 0.993	6 1.6818 47.09	D	Inerts	0.9936	0.0799	2.236	20017.
	TOTAL	1 1.6925 48.30	0 TOTAL		1	0.0804	2.294	
			Max M Max volumetric flo	CB exiting			lbs/hr ACFM	
			A		- - I E 220	0.400	ACEM	
				CB exitin	g LE-330		ACFM lbs/hr	
			Avg M	CB exitin	g LE-330	0.252	tons/yr	
						0.336		

SUBJECT V Purpose: C	/OC calculatio			Intification (co			COMP	DATE UTED BY	6/12/20 SMB				
SUBJECT V Purpose: C Assumptions: A	/OC calculatio	ons for Revised Title		Intification (co	-		0000		01110				
Purpose: C Assumptions: A	Complete VO			VOC calculations for Revised Title V Permit Notification (continued)									
Assumptions: A	1												
		C calcs for all MCB o	controlled en	nission source	s in the Su	ulfone Mono	omer Unit per	revised 80M	M material	balance.			
Calculations:	Average emissions calculated using max average daily level change over past 6 years.												
		rce No. S6A ent No. LE-405		Feed Tank Co lenser for MCI		and LD-458							
C	Calculate aver	rage breathing		n=PV/RT			-	Average Daily Level Change LD-401 LD-458					
C	_alculate aver	rage breathing:		n=PV/KI LD-401		MCB	2016	2.7	5.0				
			moles, n	moles, n T	Temp	Vap Press	2017	2.6	5.0				
			0.124	_	10			1.5	2.8				
			0.214		54			1.8	3.1				
			0.101	0.210	73.5	114.39	2020 2021	1.7 1.9	2.5 3.6				
		А	verage flow		bmoles/da	5	2022	3.7	4.0				
C	0.01765521 lbmoles/hr Calculate start-up emissions (max rate):												
		for year 0.00128186	6 ibmoies/ n		Aole Flow	LFI405 7 (lbmol/hr) Total N2 M	0.03						
I	Femp in	25 C 1.872 lbmoles/hr				Temp in 0.018	54 C blbmoles/hr						
				Moleflow N	lass flow			Mc	oleflow Ma	ass flow			
				Ibmoles/hr Ib		0.3154833			noles/hr lbs				
		MCE Inerts			6.930 50.679		MCB Inerts	0.108 0.892	0.002 0.042	0.21 1.17			
		TOTAL	.3 0.307		57.608		TOTAL	1	0.042	1.39			
т	Femp out	10 C		Moleflow M	/lass flow			Ma	oleflow Ma	ass flow			
C	Dutlet flow			lbmoles/hr lb					noles/hr lbs				
		MCE			1.302		MCB	0.006	0.000	0.03			
		Inert: TOTAL	s 0.9936 1		50.679 51.981		Inerts TOTAL	0.994 1.000	0.042 0.042	1.17 1.20			
		1											
				etric flow exitir Avg MCB exitir			ACFM tons/yr						

Redacted Copy

3702 Clanton I	Rd.	spec	CIAL	ry pc	OLYM	ers	LLC	l	SHEET #	ŧ 60	of 18
Augusta, Geor	gia 30906								DATE	6/12	/2023
JOB NAME	80MM Sul	fone Momn	er Expansion					COM	IPUTED BY		MB
SUBJECT	VOC calcu	ılations for I	Revised Title	V Permit No	otification (co	ntinued)		СН	ECKED BY	/ N	JJA
Purpose:	Complete	VOC calcs f	or all MCB co	ntrolled em	iission source	s in the Sulf	one Monon	ner Unit pe	r revised 80)MM materia	al balance.
Assumptions:			d, all inlet and surface of LD-		1		ondenser ar	e 60°C and	ł 10°C resp	ectively.	
Calculations		Source No. ipment No.		Sulfone Ex Atm vent	stractor from LD-430			n=PV/RT LD-430		V D	T + 1
				MCB	Water	CBSA		moles, n 0.147859		Vap Press 65.757105	
		Vapor pres	ssure @ 60C	65.12	149.56	0.0005		54.0		vel Change (Daily Ayg)
	Temp in	60	С						2016	6 1.6	,
		In/Out	Max flow in	6.1	CFM	364	CFH		2017 2018		
	Avg f	,	ning 24 hr avg				lbmoles/hr	•	2019	9 2.0	
									2020 2021		
									2022	2 2.3	
364 1	CFH max	rate of inerts					CFH avera	de rate of i	nerts		
	lbmoles/hr		0.006 lbmoles/hr								
	Liquid mass frac	Liquid mole frac	Vapor mole frac	Moleflow lbmoles/hr	Mass flow bs/hr		Liquid mass frac	Liquid mole frac	Vapor mole frac	Moleflow lbmoles/hr	Mass flow lbs/hr
MCE	1	1.000	0.086	0.078	8.766	MCB	1.00	1.00	0.086	0.001	0.059
Wate		0.000 0.000	0.000 0.914	0.000 0.831	0.000 23.269	Water Inerts	0.00 0.00	0.00 0.00	0.000 0.914	0.000 0.006	0.000 0.158
CBSA		0.000	0.000	0.000	0.000	CBSA	0.00	0.00	0.000	0.000	0.000
TOTAL	1	1	1	0.909	32.035	TOTAL	1	1	1	0.006	0.217
			I		Max MCB exit etric flow exit		8.766 6.84	lbs/hr ACFM			
					Avg MCB exit etric flow exit		0.260 0.05	tons/yr ACFM			

3702 Clanton F									SHEET #	7 o	f 18	
Augusta, Geor	gia 30906								DATE	6/12/	2023	
JOB NAME	80MM Sulfone Momner Expansion								COMPUTED BY		SMB	
SUBJECT	VOC calculations for Revised Title V Permit Notification (continued)							CH	IECKED BY	' N	NJA	
Purpose:	Complete	VOC calcs f	or all MCB co	ntrolled e	mission sour	ces in the S	ulfone Mor	omer Unit 1	oer revised	80MM mater	ial balance.	
_	-		ed, all inlet and									
Calculations:						~ .						
		Source No. ipment No.		Product Dehydration Condenser Vent Condenser for MCB for LT-460								
				MCB	Water							
			ssure @ 40C	26.04	55.4							
	Temp in	Vapor pres 40	ssure @ 10C C	4.83	9.21							
	Inert Flow		Instruments			20	CFH					
			Max Flow in	60.0	GPM or	481	CFH					
	A	Avg Flow in	(1/4 of max)	15.0	GPM or	120	CFH					
	Inlet Flow	501	CFH Max Rat	te of inerts	6		140	CFH Avera	age Rate of	inerts		
		1.217	lbmoles/hr		Moleflow	Mass flow		Ibmoles/hr		Moleflow	Mass flow	
			MCB	0.034	lbmoles/hr 0.043	lbs/hr 4.86	2.339	ACFM MCE		lbmoles/hr 0.012	lbs/hr 1.31	
			Inerts	0.966	1.217	34.08		Inerts		0.329	9.21	
			TOTAL	1.000	1.261	4.861		TOTAL	1.000	0.341	1.314	
	Temp Out	10	С		Moleflow	Mass flow				Moleflow	Mass flow	
	Outlet flow			mole frac		lbs/hr			mole frac	lbmoles/hr	lbs/hr	
			MCB	0.006	0.008	0.88		MCE		0.002	0.24	
			Inerts TOTAL	0.994	1.217 1.225	34.08 34.961		Inerts TOTAL	<u> </u>	0.329	9.21 9.451	
		ļ	-									
								iting LE-467		lbs/hr		
						lax volumet vg volumet				ACFM ACFM		
					-			iting LE-467		tons/yr		

Purpose:	VOC calcu	llations for R			Votification	(continued)			DATE	6/12/2023 SMB
SUBJECT Purpose:	VOC calcu	llations for R			Notification	(continued)				
•	Complete					(continucu)		CHECKE	DBY	NJA
Calculations:			n of MCB ir	ı water baha		ie as pure M		•		IM material balanc . (Savatsky 1991 A
		pment No. I			from LD-43					
	Va	apor Pressure	e of Compo Temp 2	MCB	Water	CBSA 2 4.30E-06				
	Total Flow	I MCB Water Inerts	bmoles/hr Liquid nass frac 0.001 0.998 0.000	0.0002 0.9998 0.0000	Vapor mole frac 0.017 0.033 0.950	Moleflow Ibmoles/hr 0.002 0.005 0.138	0.3 0.1 3.9			
		CBSA TOTAL	0.001	0.0001	0.000	0.000 0.146 iting LD-435	0.0 4.2	tons/yr		

3702 Clanton I	Rd.	Special/I	Y PC	LYM	ers	LLC	1	SHEET #	¢9 o	f 18
Augusta, Geor	rgia 30906							DATE	6/12	/2023
JOB NAME	80MM Sulf	one Momner Expansion					COM	PUTED BY		MB
SUBJECT	VOC calcu	lations for Revised Title V	/ Permit No	otification (co	ontinued)		СН	ECKED BY	/ N	IJA
Purpose:	Complete '	VOC calcs for all MCB con	ntrolled em	ission source	es in the Sulf	fone Mono	mer Unit per	revised 801	MM material	balance.
Assumptions:	Unless oth	erwise noted, all inlet and	l outlet tem	peratures to	each MCB c	ondenser a	are 70°C and 1	10°C respec	tively.	
Calculations		,		r						
Calculations				ehydration C					MCB	water
	Equi	pment No. LE-477	Vent Cond	lenser for MC	CB for LT-47	70	Azeotrope	70C 269 mmHg	0.17	0.83
			MCB	Azeotrope			Azeotrope	40C	0.175	0.825
		Vapor pressure @ 40C Vapor pressure @ 10C	26.04 4.83				Azeotrope	64.6 mmH 10C	g 0.185	0.815
	Temp in	40 C					1		MOLE FRA	\CS
	Inert Flow	Instruments			20	CFH				
		Max Flow in Avg Flow in (1/4 of max)	60.0 15.0	GPM or GPM or	481 120	CFH CFH				
		o (, , ,		GI WI OI	120					
	Inlet Flow	501 CFH Max Ra 1.217 lbmoles/hr	te of inerts	Moleflow	Mass flow) CFH Avera 1 lbmoles/hr	ge Rate of i	inerts Moleflow	Mass flow
			mole frac	lbmoles/hr	lbs/hr	2.65	5 ACFM	mole frac	lbmoles/hr	lbs/hr
		MCB Azeo(H2O)	0.034 0.070	0.047 0.097	5.33 1.747		MCB Azeo(H2O)	0.034 0.070	0.013 0.027	1.49 0.489
		Azeo(MCB)		0.021	2.314		Azeo(MCB)		0.006	0.648
		Inerts TOTAL	0.881	1.217 1.382	34.08 9.391		Inerts TOTAL	0.881	0.341	9.54 2.629
	Temp Out	10 C		Moleflow	Mass flow				Moleflow	Mass flow
	Outlet flow		mole frac	lbmoles/hr	lbs/hr			mole frac	lbmoles/hr	lbs/hr
		MCB Azeo(H2O)	0.006 0.012	0.008 0.015	0.89 0.264		MCB Azeo(H2O)	0.006 0.012	0.002 0.004	0.25 0.074
		Azeo(MCB)	0.003	0.003	0.375		Azeo(MCB)	0.003	0.001	0.000
Current per	mit is larger	than calculated Inerts	0.979	1.217 1.243	34.08 35.613	_	Inerts TOTAL	0.979	0.341	9.54 9.864
										0.001
				1			xiting LE-467 xiting LE-467	1.264 7.716	lbs/hr ACFM	
				1	0		xiting LE-467	2.160	ACFM	
					А	vg MCB e	xiting LE-467	1.090	tons/yr	

DATE 6/12/2023 NAME SIMM Sulfore Mommer Expansion COMPUTED BY SMB VCC calculations for Revised Title V Permit Notification (continued) CHECKED BY NJA rpose: Complete VCC calcs for all MCB controlled emission sources in the Sulfone Monomer Unit per revised 80MM material b trimes: Source No. S7B Acid Extractor Source No. S7B Acid Extractor Fugure ressure @10(C Yop or Pressure @10(C Source No. S7B Acid Extractor Source No. S7B A	Clanton I usta, Geor	ка. rgia 30906								SHEET #	10 of 18
LECT VOC calculations for Revised Title V Permit Notification (continued) CHECKED BY NJA rpose: Complete VOC calcs for all MCB controlled emission sources in the Sulfone Monomer Unit per revised 80MM material b Nin rpose: Complete VOC calcs for all MCB controlled emission sources in the Sulfone Monomer Unit per revised 80MM material b stime: Unless otherwise noted, all infet and outlet temperatures to each MCB condenser are 70°C and 10°C respectively. Assume dilute solution of MCB in water bahaves the same as pure MCB in terms of vapor pressure of MCB. (Savatsky 15) lation: Source No. 578 Acid Extractor Equipment No. LE-448 Vent Condenser for MCB for LT-445 & LT-455 Vapor Out of LT-443 (Assume 70C & 760 mmHg) Mass Flow, Mole Flow Mole Flow Mass Flow, Mole Flow Mole Flow Mole Flow Mass Flow, Mole Flow Mole Flow Mass Flow, Mole Flow Mole Flow Mass Flow Components (Ibm/n) Mass Flow Components Mass Flow Mole Flow Mole Flow Mole		-								DATE	6/12/2023
rpose: Complete VOC calcs for all MCB controlled emission sources in the Sulfone Monomer Unit per revised 80MM material b trions: Unless otherwise noted, all inlet and outlet temperatures to each MCB condenser are 20°C and 10°C respectively. Assume ditue solution of MCB in water bahaves the same as pure MCB in terms of vapor pressure of MCB. (Bavatsky 15 International Condenser for MCB for LT-445 & LT-455 Vapor Pressure 870C Component mmHg MCB 433 MCB 433 MCB 98.46 Water 233.88 51EBHR AVG Rate of Inerts 51EBHR AVG	NAME	80MM Sulf	one Momn	er Expansior	L				COMP	JTED BY	SMB
Values of therwise noted, all inlet and outlet temperatures to each MCB condenser are 70°C and 10°C respectively. Assume dilute solution of MCB in water bahaves the same as pure MCB in terms of vapor pressure of MCB. (Savatsky 15 lation: Intermediate solution of MCB in water bahaves the same as pure MCB in terms of vapor pressure of MCB. (Savatsky 15 gravity) Intermediate solution of MCB in water bahaves the same as pure MCB for LT-445 & LT-455 Intermediate solution of MCB as the of inerts Intermediate solution of MCB as the of inerts Intermediate solution of MCB result of the solution of t	JECT	VOC calcul	lations for I	Revised Title	V Permit N	otification (continued)		CHE	CKED BY	NJA
Values of therwise noted, all inlet and outlet temperatures to each MCB condenser are 70°C and 10°C respectively. Assume dilute solution of MCB in water bahaves the same as pure MCB in terms of vapor pressure of MCB. (Savatsky 15 lation: Intermediate solution of MCB in water bahaves the same as pure MCB in terms of vapor pressure of MCB. (Savatsky 15 gravity) Intermediate solution of MCB in water bahaves the same as pure MCB for LT-445 & LT-455 Intermediate solution of MCB as the of inerts Intermediate solution of MCB as the of inerts Intermediate solution of MCB result of the solution of t	irpose:	Complete V	VOC calcs f	or all MCB c	ontrolled er	nission sour	ces in the St	ulfone Mo	nomer Unit	per revised 8	0MM material b
Assume dilute solution of MCB in water bahaves the same as pure MCB in terms of vapor pressure of MCB. (Savatsky 15 Interest No. S7B X Pair Pressure 010C Component mmHg Mater 010C Mater 010C Source No. S7B X Vapor Pressure 010C Component mmHg Mater 010C Mater 010C Source 010C Source 010C Component mmHg Mater 010C Mater 010C Mater 01 Inft for 010 010C of LT-445 (Assume 70C & 760 mmHg) Mass Flow Mole Frac Mole Frac Mole FlowHass Flow Components (Ionh/n) (mol/m) (mol/m) (mol/m) (mol/m) Mass Flow Mole Flow Mole Frac Mole FlowHass Flow Components (Ionh/n) for 1000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.										•	
	puons.										
$\begin{split} \hline Pressure @10(Vapor Pressure @70(Component mnHg Vater 23388) \\ \hline \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	lations										
Component mmHg water 9.21 Water 233.88 SILB/HR AVG Rate of Inerts 0.179 MOL/HR AVG Rate of Inerts 0.179 MOL/HR AVG Rate of Inerts Vapor Phase water vapor Out of LT-445 (Assume 70C & 760 mmHg) Liquid Phase Vapor Phase Vapor Phase Mass Flow, Mole Flow, Mole Frac, Mole Frac		Equip	oment No.	LE-448	Vent Cond	enser for M	CB for LT-4	45 & LT-45	55		
$ \frac{MCB}{Water} \frac{4.83}{9.21} \frac{MCB}{Water} \frac{99.46}{233.88} $ $ \frac{S LB/HR AVG Rate of Inerts}{0.179 MOL/HR AVG Rate of Inerts} $ $ \frac{S LB/HR AVG Rate of Inerts}{0.179 MOL/HR AVG Rate of Inerts} $ $ \frac{Vapor Out of LT-445 (Assume 70C & 760 mmHg)}{Uau MOB Flow Mole Frac Mole Frac Mole Flow Phase} $ $ \frac{Vapor Out of LT-445 (Assume 70C & 760 mmHg)}{Vapor Phase} $ $ \frac{Vapor Out of LT-445 (Assume 70C & 760 mmHg)}{Uau MOB Flow Mole Flow Mole Flow Mole Flow Mass Flow Components (Umn/hr) (Umn$											
Water 9.21 Water 233.88 S LB/HR AVG Rate of Inerts 0.179 MOL/HR AVG Rate of Inerts 0.179 MOL/HR AVG Rate of Inerts Mass Flow Mole Flow Mole Frac Mole Frac Mole FlowMass Flow Components (I0m/hr) MCB 13.8 0.1 0.000 0.1100 0.01100 0.01171 Immohra CBSA 66.7 0.3 0.001 0.00 TOTAL 4622.4 252.5 1.000 0.03 11.4 Mass Flow Mole Flow Mole Frac Mole											
0.179 MOL/HR AVG Rate of Inerts Vapor Out of LT-445 (Assume 70C & 760 mmHg) Liquid Phase Vapor Phase Mass Flow Mole Fixe Mole Frac Mole Frac Mole Frac Mole Fixed Mole											
Vapor Out of LT-445 (Assume 70C & 760 mmHg) Liquid Phase Vapor Phase Mass Flow Mole Frac Molo Fr											
Liquid Phase Vapor Phase Mass Flow Mole Frac Mole Frac Mole Frac Mole Flow Components (Ibm/hr) (mol/mol) (mol/mol) (Ibm/hr) MCB 13.8 0.1 0.000 0.130 0.0 4.6 Water 4542.0 252.1 0.998 0.307 0.1 1.8 CBSA 66.7 0.3 0.001 0.563 0.2 5.0 TOTAL 4622.4 252.5 1.000 1.000 0.3 11.4 Mass Flow Mole Flow Mole Frac Mole Flow/Mass Flow Vapor Phase Mass Flow Mass Flow Mole Flow Mole Frac Mole Flow/Mass Flow Components (Ibm/hr) (Imol/hr) (Ibm/hr) MCB 17.1 0.2 0.000 0.30 0.1 1.8 Water 5639.0 312.9 1.000 0.30 0.0 4.6 Water 5639.0 312.9 1.000 0.3 11.4 Mole Frac Mole Flow <td< td=""><td></td><td>0.179</td><td>MOL/HR A</td><td>VG Rate of</td><td>Inerts</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		0.179	MOL/HR A	VG Rate of	Inerts						
Liquid Phase Vapor Phase Mass Flow Mole Frac Mole Frac Mole Frac Mole Flow Components (Ibm/hr) (mol/mol) (mol/mol) (Ibm/hr) MCB 13.8 0.1 0.000 0.130 0.0 4.6 Water 4542.0 252.1 0.998 0.307 0.1 1.8 CBSA 66.7 0.3 0.001 0.563 0.2 5.0 TOTAL 4622.4 252.5 1.000 1.000 0.3 11.4 Mass Flow Mole Flow Mole Frac Mole Flow/Mass Flow Vapor Phase Mass Flow Mass Flow Mole Flow Mole Frac Mole Flow/Mass Flow Components (Ibm/hr) (Imol/hr) (Ibm/hr) MCB 17.1 0.2 0.000 0.30 0.1 1.8 Water 5639.0 312.9 1.000 0.30 0.0 4.6 Water 5639.0 312.9 1.000 0.3 11.4 Mole Frac Mole Flow <td< td=""><td></td><td></td><td>Vapor (</td><td>Out of LT-44</td><td>5 (Assume</td><td>70C & 760</td><td>mmHa)</td><td></td><td>1</td><td></td><td></td></td<>			Vapor (Out of LT-44	5 (Assume	70C & 760	mmHa)		1		
Components (ibm/hr) (mol/m) (mol/mol) (mol/mol) (mol/m) (ibm/hr) MCB 13.8 0.1 0.000 0.130 0.0 4.6 Water 4542.0 252.1 0.998 0.307 0.1 1.8 CBSA 66.7 0.3 0.001 0.000 0.5 0.2 5.0 TOTAL 4622.4 252.5 1.000 1.000 0.3 11.4 Vapor Out of LT-455 (Assume 70C & 760 mmHg) Itiquid Phase Vapor Phase Vapor Phase Mass Flow Mole Frac				Liquid Phase	e	V	apor Phase				
MCB 13.8 0.1 0.000 0.130 0.0 4.6 Water 4542.0 252.1 0.998 0.307 0.1 1.8 CBSA 66.7 0.3 0.001 0.000 0.0 0.0 Inerts 0.0 0.0 0.000 0.563 0.2 5.0 TOTAL 4622.4 252.5 1.000 1.000 0.3 11.4 Vapor Out of LT-455 (Assume 70C & 760 mmHg) Mass Flow Mass Flow Mass Flow Mole Frac Mole Mole Frac Mole Mass Flow Mass Flow Mole Mole <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>v</td><td></td><td></td></t<>	-								v		
Water 4542.0 252.1 0.998 0.307 0.1 1.8 CBSA 66.7 0.3 0.001 0.000 0.0 0.00 Inerts 0.0 0.000 0.553 0.2 5.0 TOTAL 4622.4 252.5 1.000 1.000 0.3 11.4 Vapor Out of LT-455 (Assume 70C & 760 mmHg) Liquid Phase Vapor Phase Vapor Phase Mass Flow Mole Flow Mole Frac Mole Frac Mole Flow Mole Flow Water 5639.0 312.9 1.000 0.308 0.1 1.8 CBSA 0.0 0.00 0.000 0.00 0.00 0.00 0.00 Inerts 0.0 0.00 0.000 0.01 1.000 1.14 Mole Frac Mole Flow Mass Flow Components mol/mol mol/hr Ibm/hr Difference 0.000 Water 0.307 0.2 3.5 1.000 0.000 <t< td=""><td>C</td><td></td><td>1 1</td><td></td><td>· · · ·</td><td></td><td></td><td>•</td><td></td><td></td><td></td></t<>	C		1 1		· · · ·			•			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
Into LE-448 (T = 70C) Into LE-448 (T = 70C) Water 0.30 11.4 Into LE-448 (T = 70C) Water 0.30 11.4 Into LE-448 (T = 70C) Difference Water 0.30 11.4 Into LE-448 (T = 70C) Difference Water 0.30 0.1 0.3 Into LE-448 (T = 70C) Difference Difference Water 0.30 0.1 9.2 Water 0.30 0.1 0.3 11.4 Into LE-448 (T = 70C) Difference 0.000 0.300 0.3 11.4 Into LE-448 (T = 70C) Difference 0.000 0.300 0.3 11.4 Into LE-448 (T = 70C) Difference 0.000 0.000 0.3 11.4 Into LE-448 (T = 70C) Difference 0.000 0.000 0.000 0.000 0.000 Into LE-448 (T = 70C) Difference 0.000 0.000 0.000 0.000 0.000 Water 0.307											
Vapor Out of LT-455 (Assume 70C & 760 mmHg) Liquid Phase Vapor Phase Mass Flow Mole Flow Mole Frac Mole Frac Mole FlowMass Flow Components (Ibm/hr) (mol/mt) (mol/mt) (mol/mt) (mol/mt) MCB 17.1 0.2 0.000 0.130 0.0 4.6 Water 5639.0 312.9 1.000 0.308 0.1 1.8 CBSA 0.0 0.0 0.000 0.563 0.2 5.0 TOTAL 5656.1 313.1 1.000 1.000 0.3 11.4 MCB 0.130 0.1 9.2 0.000 0.33 11.4 MCB 0.130 0.1 9.2 0.000 0.33 11.4 MCB 0.130 0.1 9.2 0.000 0.000 0.000 Water 0.307 0.2 3.5 0.000 0.000 0.000 TOTAL 1.000 0.6 22.8 0.000 0.000 0.000 Mole Frac Mole Frac Mole Frac Mole								5.0			
Mass Flow Mole Flow Mole Frac Mole Frac Mole Flow Mass Flow Components (Ibm/hr) (mol/hr) (mol/hr) (Ibm/hr) MCB 17.1 0.2 0.000 0.130 0.0 4.6 Water 5639.0 312.9 1.000 0.308 0.1 1.8 CBSA 0.0 0.0 0.000 0.000 0.0 0.0 Inerts 0.0 0.0 0.000 0.33 11.4 MCB 0.11 1.000 1.000 0.3 11.4 Mole Frac Mole Flow Mass Flow Mole Flow Mass Flow Components mol/mol mol/hr Ibm/hr 0.000 0.3 11.4 MCB 0.130 0.1 9.2 0.000 0.000 0.000 0.000 Water 0.307 0.2 3.5 0.000 0.000 0.000 0.000 TOTAL 1.000 0.6 22.8 0.000 0.000 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th></t<>								•			
Image: MCB 17.1 0.2 0.000 0.130 0.0 4.6 Water 5639.0 312.9 1.000 0.308 0.1 1.8 CBSA 0.0 0.0 0.000 0.000 0.0 0.0 Inerts 0.0 0.0 0.000 0.563 0.2 5.0 TOTAL 5656.1 313.1 1.000 1.000 0.3 11.4			Mass Flow						v		
Water 5639.0 312.9 1.000 0.308 0.1 1.8 CBSA 0.0 0.0 0.000 0.00 0.0 0.0 Inerts 0.0 0.00 0.563 0.2 5.0 TOTAL 5656.1 313.1 1.000 0.3 11.4 Mole Frac Mole Flow Mass Flow Difference 0.000 Components mol/mol mol/hr Ibm/hr 0.000 Water 0.307 0.2 3.5 0.000 0.000 Water 0.307 0.2 3.5 0.000 0.000 0.000 TOTAL 1.000 0.6 22.8 0.000 0.000 0.000	Co		· · ·								
CBSA 0.0 0.0 0.000 0.0 0.0 Inerts 0.0 0.0 0.000 0.563 0.2 5.0 TOTAL 5656.1 313.1 1.000 1.000 0.3 11.4 Into LE-448 (T = 70C) Mole Frac Mole Flow Mass Flow Difference Components mol/nol mol/hr lbm/hr 0.000 0.000 Water 0.307 0.2 3.5 0.000 0.000 TOTAL 1.000 0.6 22.8 0.000 0.000 Out of LE-448 (T = 10C) Eigen Condensate Eigen Condensate Eigen Condensate Mole Frac Mole Frac Mole Frac Mole Flow/Mass Flow Mole Flow/Mole Frad/ass Flow Components mol/mol mol/mol/mol mol/hr Ibm/hr mol/hr Ibm/hr Mole Frac Mole Frac Mole Frac Mole Flow/Mass Flow Mole Flow/Mole Flow/Mole Frad/ass Flow Components mol/mol mol/mol/mol/mol/hr Ibm/hr mol/hr Ibm/hr											
Inerts 0.0 0.000 0.563 0.2 5.0 TOTAL 5656.1 313.1 1.000 1.000 0.3 11.4 Into LE-448 (T = 70C) Mole Frac Mole Flow Mass Flow Difference Components mol/mol mol/nr Ibm/hr Difference 0.000 Water 0.307 0.2 3.5 Inerts 0.563 0.4 10.0 TOTAL 1.000 0.6 22.8 Difference 0.000 0.000 Guess Liquid Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Frac Mole Frac Mole Flow Mass Flow Mole Flow											
Into LE-448 (T = 70C) Mole Frac Mole Flow Mass Flow Components mol/mol mol/hr Ibifference MCB 0.130 0.1 9.2 Difference Water 0.307 0.2 3.5 Inerts 0.563 0.4 10.000 TOTAL 1.000 0.000 Out of LE-448 (T = 10C) Guess Liquid Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Flow/Mass Flow Mole Flow/Mole Frad/ass Flow Mole Frac Mole Frac Mole Flow/Mass Flow Mole Flow/Mole Frad/ass Flow Mole Frac Mole Flow/Mass Flow Mole Flow/Mole											
Mole Frac Mole Flow Mass Flow Components mol/mol mol/hr lbm/hr MCB 0.130 0.1 9.2 Water 0.307 0.2 3.5 Inerts 0.563 0.4 10.0 TOTAL 1.000 0.6 22.8 Out of LE-448 (T = 10C) Guess Liquic Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Frac Mole Frac Mole Frac Mole Flow MCB 0.294 0.006 0.0 Water 0.706 0.009 0.0 MCB 0.294 0.006 0.0 0.3 MCB 0.294 0.006 0.0 0.1 0.2 0.706 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6			5656.1				0.3				
Mole Frac Mole Flow Mass Flow Components mol/mol mol/hr lbm/hr MCB 0.130 0.1 9.2 Water 0.307 0.2 3.5 Inerts 0.563 0.4 10.0 TOTAL 1.000 0.6 22.8 Out of LE-448 (T = 10C) Guess Liquic Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Frac Mole Frac Mole Frac Mole Flow MCB 0.294 0.006 0.0 Water 0.706 0.009 0.0 MCB 0.294 0.006 0.0 0.3 MCB 0.294 0.006 0.0 0.1 0.2 0.706 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6											
Components mol/mol mol/hr lbm/hr MCB 0.130 0.1 9.2 Water 0.307 0.2 3.5 Inerts 0.563 0.4 10.0 TOTAL 1.000 0.6 22.8 Out of LE-448 (T = 10C) Eliquid Condensate Mole Frac Mole Frac Mole Frac Mole Frac Mole Frac Mole Frac Mole Frac Mole Frac Mole Flow/Mass Flow Components mol/mol mol/hr MCB 0.294 0.006 0.0 Water 0.706 0.009 0.0 0.1 0.2 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6 Inerts 0.000 0.985 0.4 10.0 0.0 0.000 0.0					Mara 171						
MCB 0.130 0.1 9.2 Water 0.307 0.2 3.5 Inerts 0.563 0.4 10.0 TOTAL 1.000 0.6 22.8 Out of LE-448 (T = 10C) Guess Liquid Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Frac Mole Flow Mole Flow Mole Flow Mole Frad/lass Flow MCB 0.294 0.006 0.0 0.3 0.1 0.294 9.0 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6 Inerts 0.000 0.985 0.4 10.0 0.0 0.000 0.0	C						Difference				
Water 0.307 0.2 3.5 Inerts 0.563 0.4 10.0 TOTAL 1.000 0.6 22.8 Out of LE-448 (T = 10C) Guess Liquid Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Flow Mass Flow Mole Flow Mo	0										
TOTAL 1.000 0.6 22.8 Out of LE-448 (T = 10C) Guess Liquid Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Flow Mass Flow Mole Flow Mole Frac Bol Flow Mole		Water					J				
Out of LE-448 (T = 10C) Guess Liquid Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Flow Mass Flow Mole Flow Mole Frad/lass Flow Components mol/mol mol/mol mol/hr Ibm/hr mol/hr mol/mol Ibm/hr MCB 0.294 0.006 0.0 0.3 0.1 0.294 9.0 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6 Inerts 0.000 0.985 0.4 10.0 0.0 0.000 0.0											
Guess Liquid Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Flow Mass Flow Mole Flow Mole Frac/lass Flow Components mol/mol mol/mol mol/hr Ibm/hr mol/hr mol/mol Ibm/hr MCB 0.294 0.006 0.0 0.3 0.1 0.294 9.0 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6 Inerts 0.000 0.985 0.4 10.0 0.00 0.000 0.0		TOTAL	1.000	0.6	22.8						
Guess Liquid Vapor Vent Liquid Condensate Mole Frac Mole Frac Mole Flow Mass Flow Mole Flow Mole Frac/lass Flow Components mol/mol mol/mol mol/hr Ibm/hr mol/hr mol/mol Ibm/hr MCB 0.294 0.006 0.0 0.3 0.1 0.294 9.0 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6 Inerts 0.000 0.985 0.4 10.0 0.00 0.000 0.0											
Mole Frac Mole Frac Mole Flow Mass Flow Mole Flow/Mole Frac/lass Flow Components mol/mol mol/mol mol/hr lbm/hr mol/hr mol/mol lbm/hr MCB 0.294 0.006 0.0 0.3 0.1 0.294 9.0 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6 Inerts 0.000 0.985 0.4 10.0 0.0 0.000 0.0			Curren L invite				Liqui	d Condon	cato		
Components mol/mol mol/hr lbm/hr mol/hr mol/mol lbm/hr MCB 0.294 0.006 0.0 0.3 0.1 0.294 9.0 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6 Inerts 0.000 0.985 0.4 10.0 0.0 0.000 0.0											
MCB 0.294 0.006 0.0 0.3 0.1 0.294 9.0 Water 0.706 0.009 0.0 0.1 0.2 0.706 21.6 Inerts 0.000 0.985 0.4 10.0 0.0 0.000 0.0											
Inerts 0.000 0.985 0.4 10.0 0.0 0.000 0.0	Co	MCB	0.294	0.006	0.0	0.3	0.1	0.294	9.0		
	Co										
TOTAL 1.000 1.000 0.4 10.3 0.3 1.000 30.6	Co			0 985	0.4	10.0	0.0	0.000	0.0		
	Co	Inerts				10.0		1 0 0 0			

702 Clanton	Rd.	SHEET #	11 of 18
ugusta, Geo	rgia 30906		
		DATE	6/12/2023
OB NAME	80MM Sulfone Momner Expansion	COMPUTED BY	SMB
UBJECT	VOC calculations for Revised Title V Permit Notification (continued)	CHECKED BY	NJA

Purpose: Complete VOC calcs for all MCB controlled emission sources in the Sulfone Monomer Unit per revised 80MM material balance.

Assumptions: Unless otherwise noted, all inlet and outlet temperatures to each MCB condenser are 70°C and 10°C respectively. Assume dilute solution of MCB in water bahaves the same as pure MCB in terms of vapor pressure of MCB. (Savatsky 1991 Amoco

Calculations:

Source No. S488 Equipment No. LE-488 New Karr Column Vent Condenser

. LE-488 Vent Condenser for New 80MM Project Karr Columns (LT-XX1 and LT-XX2 Below)

sure with	Vapor Pressure @70C				
mmHg	Component	mmHg			
4.83	MCB	98.46			
9.21	Water	233.88			
	mmHg 4.83	mmHgComponent4.83MCB			

5 LB/HR AVG Rate of Inerts 0.179 MOL/HR AVG Rate of Inerts NOTE: This vent condenser is assumed to be identical to LE-448, and the calculations were completed with the same conditions and inert vent rate as with LT-445 / LT-455.

		Vapor C	Out of LT-XX	1 (Assume	70C & 760	mmHg)	
			Liquid Phase	e	V	apor Phase)
		Mass Flow	Mole Flow	Mole Frac	Mole Frac	Mole Flow	Mass Flow
Co	mponents	(lbm/hr)	(mol/hr)	(mol/mol)	(mol/mol)	(mol/hr)	(lbm/hr)
	MCB	13.8	0.1	0.000	0.130	0.0	4.6
	Water	4542.0	252.1	0.998	0.307	0.1	1.8
	CBSA	66.7	0.3	0.001	0.000	0.0	0.0
	Inerts	0.0	0.0	0.000	0.563	0.2	5.0
	TOTAL	4622.4	252.5	1.000	1.000	0.3	11.4

		Vapor C	Out of LT-XX	2 (Assume	70C & 760	mmHg)	
			Liquid Phase	Ð	V	apor Phase)
		Mass Flow	Mole Flow	Mole Frac	Mole Frac	Mole Flow	Mass Flow
Co	mponents	(lbm/hr)	(mol/hr)	(mol/mol)	(mol/mol)	(mol/hr)	(lbm/hr)
	MCB	17.1	0.2	0.000	0.130	0.0	4.6
	Water	5639.0	312.9	1.000	0.308	0.1	1.8
	CBSA	0.0	0.0	0.000	0.000	0.0	0.0
	Inerts	0.0	0.0	0.000	0.563	0.2	5.0
	TOTAL	5656.1	313.1	1.000	1.000	0.3	11.4

		Into LE-488 (T = 70C)							
		Mole Frac	Mole Flow	Mass Flow					
Co	mponents	mol/mol	mol/hr	lbm/hr					
	MCB	0.130	0.1	9.2					
	Water	0.307	0.2	3.5					
	Inerts	0.563	0.4	10.0					
	TOTAL	1.000	0.6	22.8					

Difference 0.000

			Οι	ut of LE-48	B (T = 10C)			
		Guess Liquid	١	/apor Vent		Liqui	d Conden	sate
		Mole Frac	Mole Frac	Mole Flow	Mass Flow	Mole Flow	Mole Frac	lass Flov
Co	mponents	mol/mol	mol/mol	mol/hr	lbm/hr	mol/hr	mol/mol	lbm/hr
	MCB	0.294	0.006	0.0	0.259	0.1	0.294	9.0
	Water	0.706	0.009	0.0	0.1	0.2	0.706	21.6
	Inerts	0.000	0.985	0.4	10.0	0.0	0.000	0.0
	TOTAL	1.000	1.000	0.4	10.3	0.3	1.000	30.6

Avg MCB exiting LE-488 1.136 tons/yr

3702 Clanton Augusta, Geol				SHEET #	12 of 18
, uguota, 000.	- <u>3</u>			DATE	6/12/2023
JOB NAME	80MM Sulfone Momner Expan	nsion		COMPUTED BY	SMB
SUBJECT	VOC calculations for Revised	Title V Permit Not	ification (continued)	CHECKED BY	NJA
-	Complete VOC calcs for all Mo	CB controlled emis	sion sources in the Sulfone M	onomer Unit per revised 80MM mater	ial balance.
sumptions:					
Calculations	: Source No. Equipment No.		t Purification Vent Condense ystallizer vent Condenser	r - Crude Crystallizer	
		576. Estimated	sting was completed on the yearly emissions are based shots for MCB mass flow ra are provided below.	on this stack	
МСВ	Vent Condenser Volumetric Flow (ACFM) Volumetric Flow (SCMM) Vapor MCB Content (ppmv) Unit Conversion Constant, K2 Molecular Weight (kg/kg-mole) MCB Mass Flow (lbm/hr)	LE-576 6.9 0.190 6732 2.49E-06 112.56 0.8	Input Data	MCB Bws 0.008 volume Cj 6732 ppmv Hj 735 kcal/mc Lj,i 1 halogen atc Mj,i 35.45 g/g-mol Mj 112.56 g/g-mol T 27.2 C Qs 6.9 acfm Qs 0.190 stnd m3/r	ol om(s) e e
	Avg MCB exiting LE-576	3.462 tons/y	r		
			Support calculation	ns	
				EHAP= K2 * Qs * (Σ(Cj * M = 0.35761 kg/hr	lj))

-	ia 30906				DATE	6/12/2023
-	80MM Sulfone Momner Expan	sion			COMPUTED BY	SMB
SUBJECT	VOC calculations for Revised 1		ation (continued)		CHECKED BY	NJA
Purpose: C sumptions: Calculations:	Complete VOC calcs for all MC Source No.		n sources in the Sulfone Mor urification Vent Condenser	nomer Unit pe	er revised 80MM mate	rial balance.
Laiculations.	Equipment No.		e Vent Condenser		_	
		680. Estimated yea testing. Screensho	g was completed on the vo arly emissions are based o ots for MCB mass flow rate are provided below.	n this stack		
	Vent Condenser Volumetric Flow (ACFM) Volumetric Flow (SCMM) Vapor MCB Content (ppmv) Unit Conversion Constant, K2 folecular Weight (kg/kg-mole) MCB Mass Flow (lbm/hr)	LE-680 16.9 0.460 3995 2.49E-06 112.56 1.1	Input Data	Bws Cj Hj,i Mj,i Mj T Qs Qs	MCB 0.01 volu 3995 ppi 711.2 kcal 1 halogen 35.45 g/g-r 112.56 g/g-r 30.4 C 16.9 act 0.459 stnd m	mv /mol atom(s) nole C fm
	Avg MCB exiting LE-680	4.974 tons/yr				
			Support calculati		HAP= K2 * Qs * (Σ = 0.51337	(Cj * Mj)) ka/hr

3702 Clanton I Augusta, Geor									SHEET #	14 of 18
Augusta, Geol	gia 30300								DATE	6/12/2023
JOB NAME	80MM Sul	lfone Momner Expan	nsion					COM	PUTED BY	SMB
SUBJECT	VOC calcu	ulations for Revised	Title V Perr	nit Notifica	tion (continued)			CH	ECKED BY	NJA
•		VOC calcs for all M ilute solution of MC					*			
Calculations:		Source No. Equipment No.			rification Vent C lizer vent Conde	ondenser - Crude nser	Crystallizer			
								K2 2.5E-06	MW 112.56	
	ACFM Flow	Vent Condenser	Qs (SCMM)	MCB PPMV	MCB Mass Flow (kg/hr)	MCB Mass Flow (lbm/hr)	Emission Est (tn/yr)	(tn/yr)/C FM	MB ACFM	MB LB/HR
	6.9 16.9	LE-576 LE-680	0.190 0.460	6732 3995	0.4 0.5	0.8 1.1	3.462 4.974	0.5 0.3	15.7 22.9	1.8 2.3
	LE-679 MC	olume Flow (ACFM) CB Emissions (tn/yr) Emissions (Ibm/hr)	8.4 3.343 0.8			emissions fr completed in were used to cal	ons estimate is co rom LE-576 and 2016. The measu lculate a (tn/yr)/ nass balance A(overall emissio	LE-680 fro ared value ACFM val CFM flow	om stack tes es from the r ue, which v from LE-679	ting report vas then

3702 Clan		VIEKS LLC						SHEET	# <u>15 o</u>	f 18
Augusta, (Georgia 30906							DAT	e 6/12/	202
OB NAME	80MM Sulfone Momner	r Expansion						COMPUTED B	Y EI	H
SUBJECT	VOC calculations for Re	evised Title V P	ermit No	tification (co	ntinued)			CHECKED B	Y SM	IB
1	ntrol Device: LE-368 Description: MIS Crackir Soruces: LD-792 (LT- ssumptions:									
	Max temperature of inle Outlet temperature from					roach to Chi	lled MCB hea	nder at 0°C)		
	Temperature (°C)	Vapor Pre	MCB	m Ha)		MCBuana	processo cal	culated using		
	40 10		26.61 4.97				uation Const			
	Assume ideal gas behav			w to predict	MCB concentra	ation in vent	stream:			
			ex _{MCB}							
	Assume liquid composi most conservation estin	ition in all vess	els is 100%	6 MCB. This	s condition wil	l only occur	at start up bu	t will give the		
		Умс	BB=P*N	ИCB						
	Vapor fraction of MCB	in vent stream	is estimat	ed by:						
		Умсі	_B =P [*] _{MC}	_B /P						
	Assume nitrogen is the	only other com	pound p	resent in ver	it stream.					
		y Nitro	_{gen} =1-y	ИСВ						
	Vapor fraction MCB Vapor fraction MCB							stream at 40°C stream at 10°C		
	The maximum fill rate charging/filling of the	for the LE-368	Vent Sys		-		-			
	Max fill rate for LE-368			R-350 durins	g sulfuric acid	and MIS ch	arging):			
			50.0	gpm						
	Average fill rate for LE	-368 vent head	802.1 er vessels	CFH s is based or	1 the average a	mount of m	aterial charge	ed to the LR-350) MIS	
	reactor:						Ŭ			
			3.1 49.4	gpm CFH						
	Instrument loadings fo accounted for by the va							l not be		
	E	Instrument LFIC-350		e (SCFH) 25						
	Max Instrument loadii	ng on LE-368:	25.0	CFH						
	The average max loadin loading.	ng on LE-368 is	the sum	of the avera	ige fill rate, ins	strument loa	ding, and va	cuum system		
	Max loadii Average loadii	ng on LE-368: ng on LE-368:	827.1 74.4	CFH CFH						
	Convert loading from (CFH to lbmole	s/hr using	g ideal gas la	iw:					
	Man in and In a dis	ng on LE-368:	2.009 0.181	lbmoles/hi lbmoles/hi						
	Average inert loadii	ng on LE-368:	0.181		i ilicito					
Temp in	Average inert loadii Maximuu	ng on LE-368: m Loading	0.181	,		40		ge Loading		
Temp in	Average inert loadii Maximur 40 C Mole	m Loading Mole flow	Mass flow	_	Temp in	40	C Mole	Mole flow	Mass flov	N
Temp in	Average inert loadi Maximur 40 C Mole Fraction MCB 0.035	m Loading Mole flow I Ibmoles/hr 0.073	Mass flow Ibs/hr 8.204	_		MCB	C Mole Fraction 0.035	Mole flow Ibmoles/hr 0.007	lbs/hr 0.738	N
Temp in	Average inert loadin Maximur 40 C Mole Fraction	m Loading Mole flow I Ibmoles/hr	Mass flow Ibs/hr	_			C Mole Fraction	Mole flow Ibmoles/hr	lbs/hr	N
Temp in Temp out	Average inert loadin 40 C Fraction MCB 0.035 Inerts 0.965 TOTAL 1 10 C	Mole flow I Ibmoles/hr 0.073 2.009 2.082	Mass flow Ibs/hr 8.204 56.241 64.446			MCB Inerts	C Mole Fraction 0.035 0.965 1 C	Mole flow Ibmoles/hr 0.007 0.181 0.187	lbs/hr 0.738 5.056 5.794	
	Average inert loadin Maximur 40 C Fraction MCB 0.035 Inerts 0.965 TOTAL 1 10 C Mole	Mole flow I Ibmoles/hr 0.073 2.009 2.082 Mole flow I	Mass flow Ibs/hr 8.204 56.241		Temp in	MCB Inerts TOTAL	C Mole Fraction 0.035 0.965 1 C Mole	Mole flow Ibmoles/hr 0.007 0.181	lbs/hr 0.738 5.056	
	Average inert loadin Maximuu 40 C Fraction MCB 0.035 Inerts 0.965 TOTAL 1 10 C Mole Fraction MCB 0.0065	Mole flow I Ibmoles/hr 0.073 2.009 2.082 Mole flow I Ibmoles/hr 0.013	Mass flow Ibs/hr 8.204 56.241 64.446 Mass flow Ibs/hr 1.489		Temp in	MCB Inerts TOTAL 10 MCB	C Mole Fraction 0.035 0.965 1 C Mole Fraction 0.0065	Mole flow Ibmoles/hr 0.007 0.181 0.187 Mole flow Ibmoles/hr 0.001	Ibs/hr 0.738 5.056 5.794 Mass floo Ibs/hr 0.134	
	Average inert loadin Maximur 40 C Fraction MCB 0.035 Inerts 0.965 TOTAL 1 10 C MOle Fraction	Mole flow I Ibmoles/hr 0.073 2.009 2.082 Mole flow I Ibmoles/hr	Mass flow Ibs/hr 8.204 56.241 64.446 Mass flow Ibs/hr		Temp in	MCB Inerts TOTAL 10	C Mole Fraction 0.035 0.965 1 C Mole Fraction	Mole flow Ibmoles/hr 0.007 0.181 0.187 Mole flow Ibmoles/hr	Ibs/hr 0.738 5.056 5.794 Mass floo Ibs/hr	
Temp out	Average inert loadin Maximur 40 C Mole Fraction MCB 0.035 Inerts 0.965 TOTAL 1 10 C Mole Fraction MCB 0.0065 Inerts 0.9935	Mole flow I Ibmoles/hr 0.073 2.009 2.082 Mole flow I Ibmoles/hr 0.013 2.009 2.022 to condenser:	Mass flow Ibs/hr 8.204 56.241 64.446 Mass flow Ibs/hr 1.489 56.241		Temp in Temp out Max e	MCB Inerts TOTAL 10 MCB Inerts	C Mole Fraction 0.035 0.965 1 C Mole Fraction 0.0065 0.9935 1 condenser	Mole flow Ibmoles/hr 0.007 0.181 0.187 Mole flow Ibmoles/hr 0.001 0.181	lbs/hr 0.738 5.056 5.794 Mass flor lbs/hr 0.134 5.056	

Augusta, (SPECIALTY POL ton Rd. Georgia 30906							SHEET #	6/12/202
OB NAME SUBJECT	80MM Sulfone Mom VOC calculations for	A.	Permit No	tification (cc	ontinued)			COMPUTED BY CHECKED BY	SMB NJA
object	voc culculuiono ior	nerioeu mie r	i ciniti i ti	, and a loss of the	minucuj			cilleteb bi	
1	ntrol Device: LE-347 Description: New MIS Soruces: New MIS ssumptions: Max temperature of	Cracking II Equi	ipment (T E-347 is as	BD) sumed to be					
	Outlet temperature f		MCB		erature of app				
	40	Vapor Pr	essure (m 26.61	m Hg)			or pressure cal quation Const		
	10		4.97						
	Assume ideal gas bel	navior and use R	aoult's La	w to predict 1	MCB concentra	ation in ven	t stream:		
		Умсв	P=x _{MCB}	P_{MCB}^{*}					
	Assume liquid comp most conservation es				s condition wil	l only occu	r at start up bu	t will give the	
		Ум	_{CB} P=P [*]	MCB					
	Vapor fraction of MC	B in vent stream	is estima	ted by:					
		Умо	_{CB} =P [*] _{MC}	_B /P					
	Assume nitrogen is t	he only other cor	npound p	resent in ven	t stream.				
		y _{Niti}	ogen=1-	Умсв					
	Vapor fraction M	CB in vent strear	n at 40°C	= 0.035	Vapo	r fraction ni	trogen in vent	stream at 40°C =	0.965
	Vapor fraction M							stream at 10°C =	
	charging/filling of the Max fill rate for LE-3			eactor during	sulfuric acid	and MIS ch	arging):		
			802.1	CFH					
	Average fill rate for reactor:	LE-347 vent head	der vessel	s is based on	the average a	mount of n	naterial charge	d to the Future M	AIS II
		LE-347 vent head	3.1	gpm	the average a	mount of n	naterial charge	d to the Future N	AIS II
		for the LE-347 s	3.1 49.4 ystem are	gpm CFH listed below	r (the list inclu	des instrur	nents that will		AIS II
	reactor: Instrument loadings	for the LE-347 s	3.1 49.4 ystem are s, i.e. inst Flowra	gpm CFH listed below	r (the list inclu	des instrur	nents that will		ЛІ Б II
	reactor: Instrument loadings	for the LE-347 s vacuum system Instrument LFIC-XXX	3.1 49.4 ystem are s, i.e. inst Flowra	gpm CFH listed below ruments purg	r (the list inclu	des instrur	nents that will		AIS II
	reactor: Instrument loadings accounted for by the	for the LE-347 s vacuum system Instrument LFIC-XXX ding on LE-347:	3.1 49.4 ystem are s, i.e. inst Flowra 25.0	gpm CFH listed below ruments pur te (SCFH) 25 CFH	r (the list inclu ges on crystall	des instrur izer system	nents that will (s):	not be	AIS II
	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max loc	for the LE-347 s vacuum system Instrument LFIC-XXX ding on LE-347:	3.1 49.4 ystem are s, i.e. inst Flowra 25.0	gpm CFH listed below ruments pur te (SCFH) 25 CFH	r (the list inclu ges on crystall	des instrur izer system	nents that will (s):	not be	AIS II
	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max loc	for the LE-347 s vacuum system LFIC-XXX ding on LE-347 : ding on LE-347 : ding on LE-347 : ding on LE-347 :	3.1 49.4 ystem are s, i.e. inst Flowra 25.0 is the sum 827.1 74.4	gpm CFH listed below ruments pur ie (SCFH) 25 CFH of the avera CFH CFH	r (the list inclu ges on crystall ge fill rate, ins	des instrur izer system	nents that will (s):	not be	AIS II
	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max loc Average loa Convert loading from	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: ding on LE-347: n CFH to Ibmole ding on LE-347:	3.1 49.4 ystem are s, i.e. inst Flowra 25.0 is the sum 827.1 74.4	gpm CFH listed below ruments pur ie (SCFH) 25 CFH of the avera CFH CFH	r (the list inclu ges on crystall ge fill rate, ins w: Inerts	des instrur izer system	nents that will (s):	not be	AIS II
	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max loa Average loa Convert loading from Max inert loa Average inert loa Maxim	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: ding on LE-347: n CFH to Ibmole ding on LE-347:	3.1 49.4 ystem are s, i.e. inst Flowra 25.0 is the sum 827.1 74.4 es/hr usin 2.009	gpm CFH listed below ruments pur; le (SCFH) 25 CFH of the avera CFH CFH g ideal gas la lbmoles/hi	y (the list inclu ges on crystall ge fill rate, ins w: Inerts Inerts	des instrur izer system	nents that will (s): ading, and vac	not be	AIS II
Temp in	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max loa Average loa Convert loading from Max inert loa Average inert loa Average inert loa Maximed loading from Max inert loading from	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: n CFH to Ibmole ding on LE-347: to Ibmole ding on LE-347: uum Loading Mole flow	3.1 49.4 ystem are s, i.e. inst Flowra 25.0 is the sum 827.1 74.4 styfhr usin 2.009 0.181 Mass flow	gpm CFH listed below ruments purj le (SCFH) 25 CFH of the avera CFH CFH g ideal gas la lbmoles/hu	r (the list inclu ges on crystall ge fill rate, ins w: Inerts	des instrur izer system	nents that will s): ading, and vac ading, and vac Averaj C Mole	not be cuum system ge Loading Mole flow	Massflow
Temp in	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max los Average loa Convert loading from Average inert loa Average inert loa Max inert loa Average inert loa Max inert loa Average inert loa Max inert loa	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: um Loading Mole flow lbmoles/hr 0.073	3.1 49.4 ystem are s, i.e. inst Flowra 25.0 is the sum 827.1 74.4 2.009 0.181 Mass filoo bs/hr	gpm CFH listed below ruments purj le (SCFH) 25 CFH of the avera CFH CFH g ideal gas la lbmoles/hu	y (the list inclu ges on crystall ge fill rate, ins w: Inerts Inerts	des instrur izer system strument lo 40 MCB	nents that will s): ading, and var ding, and var Avera C Mole Fraction 0.035	unot be uuum system ge Loading Mole flow Ibmoles/hr 0.007	Mass flow Ibs/fn 0.738
Temp in	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max lor Average loa Convert loading from Average inert loa Average inert loa Average inert loa Maxing Maxing Maxing Fraction	for the LE-347 s vacuum system Instrument LFIC-XXX ding on LE-347 i ding on LE-347; ding on LE-347; n CFH to Ibmold ding on LE-347; nu LC-347; nu LC-347; nu LC-347; Mole flow Ibmoles/hr	3.1 49.4 ystem are s, i.e. inst Flowra 25.0 is the sum 827.1 74.4 2:syhr usin 2.009 0.181 Mass flow bs/hr	gpm CFH listed below ruments purj le (SCFH) 25 CFH of the avera CFH CFH g ideal gas la lbmoles/hu	y (the list inclu ges on crystall ge fill rate, ins w: Inerts Inerts	des instrur izer system strument lo	nents that will s): ading, and vac ding, and vac Avera Mole Fraction	not be tuum system ge Loading Mole flow Ibmoles/hr	Mass flow Ibs/hr
	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max los Average loa Convert loading from Max inert loa Average inert loa Average inert loa Max inert loa Average inert loa Average inert loa Average inert loa Max inert loa Average inert loa Max inert loa Average inert loa A	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: n CFH to Ibmole ding on LE-347: uum Loading Mole flow Ibmoles/hr 0.073 2.009	3.1 49.4 ystem are s, i.e. inst Flowra 25.0 is the sum 827.1 74.4 827.1 74.4 2.009 0.181 Mass flow bs/br 8.204	gpm CFH listed below ruments purj le (SCFH) 25 CFH of the avera CFH CFH g ideal gas la lbmoles/hu	e (the list inclu ges on crystall ge fill rate, ins w: Inerts Inerts Temp in	des instrur izer system strument lo 40 MCB Inerts TOTAL	Averag C Mole Fraction 0.035 0.965 1	t not be cuum system ge Loading Mole flow Ibmoles/hr 0.007 0.11	Mass flow Ibs/hr 0.738 5.056
Temp in Temp out	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max los Average loa Convert loading from Average inert loa Max	for the LE-347 s vacuum system LFIC-XXX ding on LE-347 : ding on LE-347 : um Loading Mole flow lbmoles/hr 0.073 2.009 2.082	3.1 49.4 ystem are s, i.e. inst 725.0 s the sum 827.1 74.4 2.009 0.181 8.204 5.6.241 5.6.241 5.6.241 6.4.446 Mass flow	gpm CFH listed below ruments pur- te (SCFH) 25 CFH of the avera CFH g ideal gas la lbmoles/hu lbmoles/hu	y (the list inclu ges on crystall ge fill rate, ins w: Inerts Inerts	des instrur izer system strument lo 40 MCB Inerts	Avera C Mole Fraction 0.035 0.965 1 C Mole	uum system ge Loading Mole flow Ibmoles/hr 0.181 0.187 Mole flow	Mass flow, Ibs/hr 0.738 5.056 5.794 Mass flow
	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max loat Average loa Convert loading from Average inert loa Average inert loa Average inert loa Maxing Max inert loa Maxing Maxing Max Instrument loa Max Instrument loading from Average inert loa Mole Fraction Mole Fracton Mole 100 C	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: ding on LE-347: n CFH to Ibmole ding on LE-347: num Loading Mole flow Ibmoles/hr 0.073 2.009 2.082	3.1 49.4 ystem are s, i.e. inst 25.0 is the sum 225.0 is the sum 827.1 74.4 2.009 0.181 Mass flow bs/br 8.204 66.241 64.446	gpm CFH listed below ruments pur- te (SCFH) 25 CFH of the avera CFH g ideal gas la lbmoles/hu lbmoles/hu	e (the list inclu ges on crystall ge fill rate, ins w: Inerts Inerts Temp in	des instrur izer system strument lo 40 MCB Inerts TOTAL	Averaj C Mole 0.955 1 C	uum system ge Loading Mole flow Ibmoles/hr 0.007 0.181 0.187	Mass flow Ibs/hr 0.738 5.056 5.794
	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max loc Average loa Convert loading from Max inert loa Average inert loa Mole Fraction MCB 0.035 Inerts 0.965 TOTAL 1 10 C Mole Fraction MCB 0.035 Inerts 0.9935	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: uum Loading Mole flow lbmoles/hr 0.073 2.009 2.082 Mole flow lbmoles/hr 0.013 2.009	3.1 49.4 ystem are s, i.e. inst Flowra 25.0 is the sum 827.1 74.4 2.009 0.181 2.009 0.181 8.204 56.241 64.446 64.446 Mass flow/bs/hr	gpm CFH listed below ruments pur- te (SCFH) 25 CFH of the avera CFH g ideal gas la lbmoles/hu lbmoles/hu	e (the list inclu ges on crystall ge fill rate, ins w: Inerts Inerts Temp in	des instrur izer system strument lo MCB Inerts TOTAL 10 MCB Inerts	Avera Avera C Mole Fraction 0.035 0.965 1 C Mole Fraction 0.095 0.905 0.0065	se Loading Mole flow Ibmoles/hr 0.007 0.181 Mole flow Ibmoles/hr 0.001 0.181	Mass flow Ibs/hr 0.738 5.056 5.794 Mass flow Ibs/hr 0.134 5.056
Temp out	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max loa Average loa Convert loading from Max inert loa Convert loading from Max inert loa Mole Fraction MCB 0.035 Inerts 0.965 TOTAL 1 10 C Mole Fraction MCB 0.0055	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: um Loading Mole flow lbmoles/hr 0.073 2.009 2.082	3.1 49.4 ystem are s, i.e. inst 25.0 s the sum 25.0 is the sum 827.1 7.4 2.009 0.181 Mass flow 182/41 56.241 56.241 1.849	gpm CFH listed below ruments purp 25 CFH of the avera CFH gi deal gas la lbmoles/hn lbmoles/hn	(the list inclu ges on crystall ge fill rate, ins uw: Inerts Inerts Temp in Temp out Max e	des instrur izer system strument lo MCB lnerts TOTAL 10 MCB lnerts TOTAL xit flow from	Avera Ading, and var ading, and var ding, and var Mole Fraction 0.965 1 C Mole Fraction 0.965 1 0.965 1 0.965 1 0.065 1 0.0955 1 0.0955 1 0.00555 1 0.00555 1 0.00555 1 0.00555 1 0.005555 1 0.005555 1 0.0055555 0.00555555 1 0.005555555555	tuum system tibmoles/hr 0.181 0.187 Mole flow Ibmoles/hr 0.087 Ubmoles/hr 0.00/1	Mass flow Ibs/hr 0.738 5.056 5.794 Mass flow Ibs/hr 0.134
Temp out Max Max ho	reactor: Instrument loadings accounted for by the Max Instrument loa The average max loa loading. Max lor Average loa Convert loading from Average inert loa Max inert loa Convert loading from Average inert loa Max inert loa Mole Fraction MCB 0.035 Inerts 0.965 TOTAL 1 10 C Mole Fraction MCB 0.0065 Inerts 0.9935 TOTAL 1	for the LE-347 s vacuum system LFIC-XXX ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: ding on LE-347: um Loading Mole flow lbmoles/hr 0.073 2.009 2.082 Mole flow lbmoles/hr 0.013 2.009 2.022 B to condenser:	3.1 49.4 ystem are s, i.e. inst 25.0 s the sum 25.0 s the sum 225.0 s the sum 74.4 2.009 0.181 0.8204 56.241 64.446 64.446 56.241 15.479 5.6241 5.731	gpm CFH listed below ruments purj le (SCFH) 25 CFH of the avera CFH CFH g ideal gas la lbmoles/hu lbmoles/hu	(the list inclu ges on crystall ge fill rate, ins uw: Inerts Inerts Temp in Temp out Max e	des instrur izer system strument lo MCB lnerts TOTAL 10 MCB lnerts TOTAL xit flow from	Avera Avera C Mole Fraction 0.035 1 C Mole Fraction 0.035 1 C Mole Fraction 0.035 1	se Loading Mole flow Ibmoles/hr 0.007 0.187 Mole flow Ibmoles/hr 0.007 0.187	Mass flow Ibs/hr 0.738 5.056 5.794 Mass flow Ibs/hr 0.134 5.056 5.190

	on Rd.		YMERS LLC						SHEET #	17 of 18
ugusta, (Georgia 3090	6							DATE	6/12/2023
DB NAME	80MM Sulfor	no Momr	or Expansion					CON	MPUTED BY	SMB
UBJECT			Revised Title V	Permit Not	ification (cor	ntinued)			HECKED BY	NJA
. , .						,			-	,
1	Soruces: L' ssumptions: Max tempera	'ent Conc T-681, LT ature of in	denser for New Γ-781, and LT-8ξ nlet stream to L	81 E-580 is ass	umed to be 4	40°C				
			om LE-580 is 10	PC (Assum	e 10°C tempe	erature of app	roach to Chille	d MCB header a	it 0°C)	
	Temperatu 40	re (°C)	Vapor P	ressure (mr 26.61	m Hg)			ressure calculat	ed using	
	10			4.97			Antoine Equa	tion Constants.		
	Assume idea	sume ideal gas behavior and use Raoult's Law to predict MCB concentration in vent stream:								
		0								
			Умсв	$P=x_{MCB}$	MCB					
			osition in all ves timate of loading			condition wil	only occur at s	tart up but will	give the	
			УN	1CBP=P [*] N	1CB					
	Vapor fractio	on of MC	B in vent stream	ı is estimate	ed by:					
	1				-					
			Ум	_{CB} =P [*] _{MCI}	3/P					
	Assume nitro	ogen is th	ne only other co	npound pr	esent in vent	stream.				
			V Nit	_{rogen} =1-y	MCB					
			-	0			<i>c</i>		. 1000	005
			CB in vent strea CB in vent strea					gen in vent strea gen in vent strea		
	Other than it	nstrumer	nt purges, the a	nticinated i	nert flow wi	ill come from	the LT-881 vac	uum system. Th	nis is modeled	after
			um system iner				uic 21-001 vac	aun system. 11	ns is moucieu	unter
				12	lbm/hr					
				176.5	CFH					
			for the LE-580 s vacuum system					s that will not	be	
	accounted to	i by the	vacuum system	<i>s,</i> ne. mstr	incins puig	cs on crystan	izer systemsj.			
			Instrument		e (SCFH)					
			Instrument Various		e (SCFH) 40					
	Max Instru	nent loa		4						
			Various	40.0	40 CFH	l rate, instrun	nent loading, a	nd vacuum syst	em loading.	
			Various ding on LE-580:	40.0	40 CFH	l rate, instrun	ient loading, a	nd vacuum syst	em loading.	
	The average	loading	Various ding on LE-580:	40.0 e sum of the	40 CFH	l rate, instrun	ient loading, a	nd vacuum syst	em loading.	
	The average	loading erage load	Various ding on LE-580: on LE-580 is the	40.0 e sum of the 216.5	CFH e average fil CFH		ient loading, a	ıd vacuum syst	em loading.	
	The average Ave Convert load	loading erage load	Various ding on LE-580: on LE-580 is the ding on LE-580:	40.0 e sum of the 216.5 es/hr using	CFH e average fil CFH	w:	tent loading, a	nd vacuum syst	em loading.	
	The average Ave Convert load	loading erage load	Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580:	40.0 e sum of the 216.5 es/hr using 0.526	CFH cFH CFH CFH ideal gas lav	w:	eent loading, a	nd vacuum syst	em loading.	
	The average Ave Convert load	loading erage load	Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I C	40.0 e sum of the 216.5 es/hr using 0.526 Loading	CFH e average fil CFH ideal gas lav	w:	ient loading, a	nd vacuum syst	em loading.	
	The average Ave Convert load Average	loading erage load ling fron inert load	Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I	40.0 e sum of the 216.5 es/hr using 0.526	CFH CFH CFH ideal gas law lbmoles/hr Mass flow	w:	ient loading, a	ıd vacuum syst	em loading.	
	The average Ave Convert load Average	loading erage load ling from inert load 40 MCB	Various Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I C Mole Fraction 0.035	40.0 e sum of the 216.5 es/hr using 0.526 .oading Mole flow Ibmoles/hr 0.019	CFH CFH e average fil CFH ideal gas lav lbmoles/hr 2.147	w:	ient loading, a	rd vacuum syst	em loading.	
	The average Ave Convert load Average Temp in	loading erage load ling fron inert load 40	Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I C Mole Fraction	40.0 e sum of the 216.5 es/hr using 0.526 .oading Mole flow Ibmoles/hr	CFH CFH CFH ideal gas lav lbmoles/hr	w:	ient loading, a	ıd vacuum syst	em loading.	
	The average Aver Convert load Average Temp in	loading erage load ling from inert load 40 40 MCB Inerts TOTAL	Various Various ding on LE-580 is the ding on LE-580 is the ding on LE-580 n CFH to Ibmole ding on LE-580: Average I C Mole Fraction 0.035 0.965 1	40.0 e sum of the 216.5 es/hr using 0.526 .oading Mole flow Ibmoles/hr 0.019 0.526	CFH CFH cFH ideal gas lav lbmoles/hr . lbs/hr 2.147 14.720	w:	ient loading, a	ıd vacuum syst	em loading.	
	The average Ave Convert load Average Temp in	loading erage load ling from inert load 40 MCB Inerts	Various Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I C Mole Fraction 0.035 0.065	40.0 e sum of the 216.5 es/hr using 0.526 .oading Mole flow Ibmoles/hr 0.019 0.526	CFH CFH e average fil CFH ideal gas lav Ibmoles/hr lbmoles/hr 2.147 14.720 16.867	w:	ient loading, a	ıd vacuum syst	em loading,	
	The average Aver Convert load Average Temp in	loading erage load ling fron inert load 40 MCB Inerts TOTAL 10	Various Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I C Mole Fraction 0.035 0.965 1 C Mole Fraction Fraction	40.0 216.5 es/hr using 0.526 coading Mole flow Ibmoles/hr 0.545 Mole flow Ibmoles/hr	CFH CFH e average fil CFH ideal gas lav lbmoles/hr bbs/hr 2.147 14.720 16.867 Mass flow Ibs/hr	w:	ient loading, a	nd vacuum syst	em loading.	
	The average Aver Convert load Average Temp in	loading erage load ling from inert load 40 MCB Inerts TOTAL 10 MCB	Various Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I C Mole Fraction 0.035 0.965 1 C Mole Fraction 0.0065	40.0 216.5 es/hr using 0.526 .oading Mole flow Ibmoles/hr 0.526 0.545 Mole flow Ibmoles/hr 0.003	CFH CFH cFH ideal gas lav lbmoles/hr 14.720 16.867 Mass flow bs/hr 0.390	w:	ient loading, a	nd vacuum syst	em loading.	
	The average Ave Convert load Average Temp in Temp out	loading erage load ling fron inert load 40 MCB Inerts TOTAL 10	Various Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I C Mole Fraction 0.035 0.965 1 C Mole Fraction Fraction	40.0 216.5 es/hr using 0.526 coading Mole flow Ibmoles/hr 0.545 Mole flow Ibmoles/hr	CFH CFH e average fil CFH ideal gas lav lbmoles/hr bbs/hr 2.147 14.720 16.867 Mass flow Ibs/hr	w:	ent loading, a	nd vacuum syst	em loading.	
Aueroce	The average Ave Convert load Average Temp in Temp out	loading erage load ling from inert load 40 MCB Inerts TOTAL 10 MCB Inerts TOTAL	Various Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole ding on LE-580: Average I C Mole Fraction 0.035 0.965 1 C Mole Fraction 0.0065 0.9935 1	40.0 216.5 es/hr using 0.526 .oading Mole flow Ibmoles/hr 0.526 0.545 Mole flow Ibmoles/hr 0.526 0.529	40 CFH CFH cFH ideal gas lav lbmoles/hr 14.720 16.867 Mass flow lbs/hr 0.390 14.720 15.110	w:	ient loading, a	nd vacuum syst	em loading.	
	The average Ave Convert load Average Temp in Temp out hourly inlet ra	loading erage load ling from inert load 40 MCB Inerts TOTAL 10 MCB Inerts TOTAL te of MC	Various Various ding on LE-580: on LE-580 is the ding on LE-580: n CFH to Ibmole Generation Generation Generation C Mole Fraction Generation Ge	40.0 216.5 es/hr using 0.526 coading Mole flow Ibmoles/hr 0.519 0.526 0.545 Mole flow Ibmoles/hr 0.525 0.525 0.529 2.147	CFH CFH cFH ideal gas lav lbmoles/hr lbmoles/hr 2.147 16.867 Mass flow lbs/hr 0.390 14.720	w:	ent loading, a	ıd vacuum syst	em loading.	

SOLVAY 3702 Clante Augusta, G	on Rd.		MERS LLC						SHEET #	18 of 18
Tragasta, C									DATE	6/12/2023
JOB NAME	80MM Sulf	one Momn	er Expansion						COMPUTED BY	SMB
SUBJECT	VOC calcul	lations for 1	Revised Title V	/ Permit No	tification (co	ontinued)			CHECKED BY	NJA
-	Use averag	e level cha	nge data in LF	-1601 during	g a two mon	th operational	period to	estimate ave	evised 80MM materia	
Calculations:	s	ource No.	S10A	Organic W	/astewater T ric vent from	ank	it terms of v	apor pressu	rre of MCB. (Savatsky	y 1991 Antoco Rep
10.7					-			1		
1.4			G Rate of Vap			System Pr			1	
	0.207	MOL/HR A	VG Rate of V	apor Strear	1	PSIA 15.0	mmHg 776	Temp, C 50	-	
					l	10.0	110	50	J	
				Out of LF-1	601 (T = 50	C)				
			Liquid Mala Elaw	Mate 7	Vap Press	Mala F	Vapor	Mag - F	4	
Co	omponents	Mass Flow Ibm/hr	Mole Flow mol/hr	Mole Frac mol/mol	"@ 50C" mmHg	Mole Frac mol/mol	mol/hr	Mass Flow Ibm/hr	-	
	Water	23111.1	1282.5	1.000	92.65	0.119	0.0	0.4		
	MCB	20.4	0.2	0.000	42.10	0.054	0.0	1.3		
	Air TOTAL	0.0 23131.5	0.0 1282.7	0.000	-	0.826	0.2	4.9 6.6	-	
	TOTAL	20101.0	1202.1	1.0000		1.000	0.2	0.0	J	

Flow80 scfmSO2 Conc.5 ppmv SO2 (after the SO2 absorber)SO2 Flow0.024 scfh SO2 (Flow x Conc. x 60 min/hr)

The volumetric flow rate can be converted to mass via the ideal gas law equation:

n = PV/RTSolving for n, n = PV/RTP = 1 atm 0.024 scfh SO2 V = R = 0.7302 atm-cf / mol R T = 459.72 R 7.15E-05 mol/hr n = The moles of SO2 can be converted to mass by multiplying by the molecular weight: MW SO2 = 64 lb/lb-mol 4.58E-03 lb/hr 0.02 tpy

An uncontrolled emission rate can be calculated by assuming a control efficiency for the SO2 absorber: 99%

4.58E-01 lb/hr 1.04E-01 tpy

Emissions of PM, sulfuric acid, and other pollutants is not expected based on vendor info.

S usage: Moles S:	1760 lb/hr 55 moles/hr
1410165 5.	55 moles/hr
	33 moles/m
Efficiency:	99.9%
	0.055 moles/hr
H2SO4 Emitted:	0.055 moles/hr
H2SO4 Emitted:	0.17 lb/hr
H2SO4 Emitted:	0.74 tpy

Emissions lb/hr

PM	PM10	PM2.5	SO2	CO	NOX	VOC	SAM	LEAD
			4.58E-03				0.17	

E	missions	(tpy)							
	РМ	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD
	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.74	0.00

Solvay Augusta - Pastillation

Line 1 Emissions:

Maximum		
Process		
Rate	1.88	tons/hr

EPA does not have a factor for emissions from pastillation of sulfone monomer. Uncontrolled emissions from adipic acid storage/transfer are used as an analgous operation to simulate emissions from this process. Controlled emissions are based on the process air flow and the expected outlet concentration of PM from EPA guidance document. Solvay will provide this concentration as a specification to the baghouse vendor.

Uncontrolled Emissions

Pollutant	Factor	lbs/hr	tpy
PM	0.8	1.50	6.57
PM_{10}^2	0.8	1.50	6.57
$PM_{2.5}^{2}$	0.8	1.50	6.57

¹AP-42, Table 6.2-2 (Metric And English Units). UNCONTROLLED EMISSION FACTORS FOR SECONDARY OXIDATION ADIPIC ACID MANUFACTUREa ²No factors available for PM_{10} and $PM_{2.5}$, so assume $PM = PM_{10} = PM_{2.5}$

Controlled Emissions

Pollutant	Factor	lbs/hr	tpy
PM	0.01	0.07	0.30
PM_{10}^2	0.01	0.07	0.30
$PM_{2.5}^{2}$	0.01	0.07	0.30

1. EPA Air Pollution Control Technology Fact Sheet; Fabric Filter Pulse-Jet Cleaned Type; EPA-452/F-03-025

2. Assume PM=PM10=PM2.5.

3. Condensable PM not expected from this non-combustion related source 800 cfm

4. Line air flow:

Lines 2 and 3 are identical to 1. Summary of emissions:

Emissions lb/hr

	PM	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD
Line 1	0.07	0.07	0.07						
Line 2	0.07	0.07	0.07						
Line 3	0.07	0.07	0.07						
Total	0.21	0.21	0.21						

Emissions (tpy)

	PM	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD
Line 1	0.30	0.30	0.30						
Line 2	0.30	0.30	0.30						
Line 3	0.30	0.30	0.30						
Total	0.90	0.90	0.90						

n = PV/RT Solving for n, n = PV/RT P = 1 atm V = 1.089947 scfh Sulfone R = 0.7302 atm-cf / mol R T = 459.72 R n = 3.25E-03 mol/hr The moles of sulfone can be converted to mass by multiplying by the molecular weight: MW Sulfone= 287.15 lb/lb-mol 0.93 lb/hr 4.08 tpy The Sulfone will condense to a liquid and then solidify under ambient conditions. Extrapolating the vapor pressure to ambient temperature shows that the vapor pressure is 0.004031 mmHg at 25 degrees C And, the concentration is 5.3 ppmv Thus, the sulfone is assumed to condense to a solid, and does not contribute to VOC. 0.93 lb/hr

The volumetric flow rate can be converted to mass via the ideal gas law equation:

4.08 tpy

EMISSION SUMMARY

Emissions lb/hr

	PM	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD
Line 1	0.07	0.07	0.07						
Line 2	0.07	0.07	0.07						
Line 3	0.07	0.07	0.07						
Tanks (3)*	0.93	0.93	0.93						
Total	1.14	1.14	1.14						

Emissions (tpy)

	PM	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD
Line 1	0.30	0.30	0.30						
Line 2	0.30	0.30	0.30						
Line 3	0.30	0.30	0.30						
Tanks (3)*	4.08	4.08	4.08						
Total	4.98	4.98	4.98						

*960, 970, 980 tanks

Solvay Augusta Facility-Sulfoone Combustion Sources Boiler and Hot Oil Heaters

WHB 20 MMBtu/hr

WHB Emissions Natural Gas

WHB	20,000,000	Btu/hr
	1021	Btu/scf
	19589	scf/hr

Pollutant	Emission Factor* (Ib/10^6 scf)	Emission Ib/hr	Emission tpy
CO ₂	120,000	4701.27	20591.58
CH ₄	2	0.09	0.395
N ₂ O (Uncontrolled)	2.2	0.09	0.378
N ₂ O(Controlled low-NOx Burner)	0.64	0.03	0.110
PM (total)	7.6	0.30	1.304
PM(condensible)	2.4	0.09	0.412
PM (filterable)	5.2	0.20	0.892
SO ₂	0.6	0.02	0.103
TOC	11	0.43	1.888
Methane	2.3	0.09	0.395
VOC	5.5	0.22	0.944
NO _X (Small Boiler-Uncontrolled)	50	1.96	8.58
CO	84	3.29	14.414

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

WHB Emissions MIS

Pollutant	Emission Factor* (Ib/Ib MIS)	Emission lb/hr	Emission tpy
CO ₂		4701.27	20591.58
CH ₄		0.09	0.395
N ₂ O (Uncontrolled)		0.09	0.378
N ₂ O(Controlled low-NOx Burner)		0.03	0.000
PM (total)		0.98	4.280
PM(condensible)		0.09	0.41
PM (filterable)	0.000552	0.88	3.868
SO ₂	0.0000195	0.03	0.137
TOC		0.43	1.888
Methane		0.09	0.395
VOC		0.22	0.944
NO _X (Small Boiler-Uncontrolled)	0.000338	0.54	2.369
CO	0.0000109	0.02	0.076

lb/lb MIS factors for 2022 stack test. Otherwise, assume MIS emissions same as Natural Gas

	PM	PM10	PM2.5	SO2	CO	NOX	VOC
WHB Gas	1.30	1.30	1.30	0.024	3.291	1.96	1.959
WHB MIS	0.98	0.98	0.98	0.031	0.017	0.54	0.215
Total	1.30	1.30	1.30	0.03	3.29	1.96	1.96
Emissions (tpv)					· · ·		-
Emissions (tpy)	1						
	PM	PM10	PM2.5	<u>SO2</u>	CO	NOX	VOC
WHB Gas	PM 5.71	PM10 5.71	PM2.5 5.71	SO2 0.10	CO 14.41	NOX 8.58	VOC 8.58
		_	-			-	

Solvay Augusta Facility-Sulfoone Combustion Sources Boiler and Hot Oil Heaters

Hot Oil Heater#1	38 MMBtu/hr
Hot Oil Heater#2	38 MMBtu/hr

Hot Oil Heater#1 NG Usage

Hot Oil Heater	38,000,000	Btu/hr
	1021	Btu/scf
	37218	scf/hr

Pollutant	Emission Factor* (Ib/10^6 scf)	Emission Ib/hr	Emission tpy
CO ₂	120,000	8932.42	39123.996
CH ₄	2	0.17	0.750
N ₂ O (Uncontrolled)	2.2	0.16	0.717
N ₂ O(Controlled low-NOx Burner)	0.64	0.05	0.209
PM (total)	7.6	0.57	2.478
PM(condensible)	7.6	0.57	2.478
PM (filterable)	7.6	0.57	2.478
SO ₂	0.6	0.04	0.196
TOC	11	0.82	3.586
Methane	2.3	0.17	0.750
VOC	5.5	0.41	1.793
NO _X (Small Boiler-Uncontrolled)	100	7.44	32.60
СО	84	6.25	27.387

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

Hot Oil Heater#2 NG Usage

Hot Oil Heater

Heater	38,000,000	Btu/hr
	1021	Btu/scf
	37218	scf/hr

Pollutant	Emission Factor* (lb/10^6 scf)	Emission Ib/hr	Emission tpy
CO ₂	120,000	8932.42	39123.996
CO ₂ (from Uncontrolled VOC emissions)	2	0.15	0.652
CO ₂ (from Controlled VOC emissions)	2.2	0.16	0.717
CH ₄	2	0.17	0.750
Lead	0.0005	0.00	0.000
N ₂ O (Uncontrolled)	2.2	0.16	0.717
N ₂ O(Controlled low-NOx Burner)	0.64	0.05	0.209
PM (total)	7.6	0.57	2.478
PM(condensible)	7.6	0.57	2.478
PM (filterable)	7.6	0.57	2.478
SO ₂	0.6	0.04	0.196
TOC	11	0.82	3.586
Methane	2.3	0.17	0.750
VOC	5.5	0.41	1.793
NO _X (Small Boiler-Uncontrolled)	100	7.44	32.60
СО	84	6.25	27.387

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

	PM	PM10	PM2.5	SO2	CO	NOX	VOC
Hot Oil Heater#1	0.57	0.57	0.57	0.045	6.253	7.44	0.409
Hot Oil Heater#2	0.57	0.57	0.57	0.045	6.253	7.44	0.409
Total	1.13	1.13	1.13	0.09	12.51	14.89	0.82

Emissions (tpy)

	PM	PM10	PM2.5	SO2	СО	NOX	VOC
Hot Oil Heater#1	2.48	2.48	2.48	0.20	27.39	32.60	1.79
Hot Oil Heater#2	2.48	2.48	2.48	0.20	27.39	32.60	1.79
Total	4.96	4.96	4.96	0.39	54.77	65.21	3.59

Solvay Specialty Polymers USA, LLC

CPV TRE Summary MON Compliance Assessment Solvay Augusta Plant

	Inlet Flow	Inlet Temp C	SCFM @ 20 C	Oulet Flow ACFM	Outlet Temp C	SCFM @ 20 C	TRE (Outlet)	≤1.9*	>1.9 & < 5.0?**
Recovery Device	ACFW		-				, ,		
LE-114		70	0.000	10.000	10	10.353	42.69	No	No
LE-208	0.420	70	0.359	0.690	10	0.714	42.69	No	No
LE-210	0.022	30	0.021	0.021	10	0.022	1463.92	No	No
LE-309	2.971	40	2.781	2.416	10	2.501	8.53	No	No
LE-330	0.519	20	0.519	0.499	10	0.517	43.88	No	No
LE-405	0.757	70	0.647	0.546	10	0.565	109.29	No	No
LD-430	1.100	70	0.940	0.130	10	0.135	59.16	No	No
LE-467	2.339	40	2.190	2.055	10	2.128	14.15	No	No
LE-435	Makeup wa	ater tank,TR	E not requi	ired					
LE-680	7.950	25	7.817	16.900	30.4	16.321	3.00	No	Yes
LE-750	WHB TRE	not required	1						
LF-1601	WWEQ tar	ık, no TRE ı	required						
LE-448	3.313	70	2.831	2.391	10	2.475	12.89	No	No
LE-477	2.655	40	2.486	2.16	10	2.236	13.48	No	No
LE-576	10.796	80	8.963	6.9	27.2	6.735	4.27	No	Yes
LE-679	398.9	30	385.749	8.4	10	8.696	4.41	No	Yes
LE-368	2.58	40	2.415	1.12	10	1.160	24.85	No	No
LE-347	2.58	40	2.415	1.12	11	1.155	24.85	No	No
LE-488	3.31	70	2.831	2.391	10	2.475	12.92	No	No
LE-580	2.58	40	2.415	3.26	10	3.375	8.65	No	No

Calculation	No.	Sheet	
By:	Date:	Project No.	
Chkd. By:	Date:	Project:	
Subject: LE-208 Rea	ctor Scrubber Condenser		

Assumptions	1) Water vapor content, compound concentration, net heat of combusion, temperature, and										
Variables				am (% by volun							
	Cj	= Concentrat	tion of compou	nd j in vent strea	am (ppmv)						
	E _{HAP}	E_{HAP} = Emission rate of total organic HAP (kg/hr)									
	E _{TOC} = Emission rate of TOC (minus methane and ethane) (kg/hr)										
	H _j = Net heat of combustion of compound j (kcal/g-mole)										
	H_T = Net heating value (MJ/cubic meter)										
	L _{j,i} = Number of atoms of halogen i in compound j (g/g-mole)										
	$M_{j,i}$ = Molecular weight of halogen i in compound j (kg/kg-mole)										
	Mj = Molecular weight of compound j (g/g-mole) T = Vent stream temperature (F)										
	Qs	= vent stream	m flow (ary stno	d cubic meter/m	on)						
Constants	K ₁	1.74E-07	(g-mole/m3)(I	MJ/kcal)/ppm	(from 40 CFF	R. Part 63. Subp	art G, Section 115)				
	K ₂		(kg-mole/m3)		-	-	art G, Section 115)				
		MCB	Inerts (N2)	Chemical 3	Chemical 4						
Input data	B _{ws}	0		onomical o	enerie a	ononiou o	- %				
	Ci	12780					ppmv				
	Hi	711.2					kcal/mol				
	Lii	1					halogen atom(s)				
	 M _{i,i}	35.45					g/g-mole				
	Mi	112.56					g/g-mole				
	T	10					C				
		0.35					acfm				
	Qs	0.0101					stnd m3/min (Group 2 CPV if <0.005 scm/min)				
Support calcul		= K2 * (∑(Cj 0.03614									
	=	= K ₂ * (∑(C _j * 0.03614	kg/hr								
Coefficients	H _T = (from 40 CFR, Pa	1.58152									
	(
	Case 1						ited vent stream)				
	Case 3	= Thermal In	cinerator, 0% h cinerator, 70% cinerator and S	heat recovery			ted vent stream) ted vent stream) vent stream)				
			Case 1	Case 2	Case 3	Case 4					
	а		1.935	1.492	2.519	3.995					
	b		3.66E-01	6.27E-02	1.18E-02	5.20E-02					
	c d		-7.69E-03 -7.33E-04	3.18E-02 -1.16E-03	1.30E-02 4.79E-02	-1.77E-03 9.70E-04					
	ŭ	_	-1.002-04	-1.102-00	4.752-02	5.70E-04					
TRE calculation											
	TRE	= (a + b * Q _s	+ c * H _T + d * E	E _{TOC})/E _{HAP}							
			a . <i>i</i>		• •	. .					
			Case 1 53.3 Choose lowes	Case 2 42.69 t TRE value for	Case 3 70.3 non-halogenat	Case 4 110.5 ed vent system					
				42.69	-	-					

		Date:		_	Shee Project No						
Chkd. By:		Date:	=('Intermediat	es'!\$J\$2	Project						
Subject: <u>LE-2</u>	210 Reactor (Cooler Conde	enser								
Assumptions	1)	Water vapor	content, comp	ound concentrat	ion, net heat o	f combusion, ter	nperature, and				
/ariables	Bwe	- Water cont	ent of vent stre	am (% by volun	ne)						
		B _{ws} = Water content of vent stream (% by volume) C _i = Concentration of compound j in vent stream (ppmv)									
	1	E_{HAP} = Emission rate of total organic HAP (kg/hr)									
	E _{TOC}	= Emission ra	ate of TOC (mi	nus methane an	d ethane) (kg/l	nr)					
	Hj	= Net heat of	f combustion o	f compound j (ko	al/g-mole)						
	HT	= Net heating	g value (MJ/cul	pic meter)							
	$L_{j,i}$	= Number of	atoms of halog	jen i in compour	nd j (g/g-mole)						
	$M_{j,i}$	= Molecular v	weight of halog	en i in compoun	id j (kg/kg-mole	e)					
	-			ound j (g/g-mole	e)						
			m temperature								
	Qs	= vent strear	m flow (ary stri	d cubic meter/m	on)						
Constants	K ₁	1.74E-07	(g-mole/m3)(MJ/kcal)/ppm	(from 40 CFF	. Part 63. Subp	art G, Section 115)				
	K ₂		(kg-mole/m3)		·	, , I	art G, Section 115)				
] ¹	MCB	Inerts (N2)	Chemical 3	Chemical 4	Chemical 5					
nput data	B _{ws}	0					%				
	Cj	6103					ppmv				
	Hj	711.2					kcal/mol				
	$L_{j,i}$	1					halogen atom(s)				
	$M_{j,i}$	35.45					g/g-mole				
	Mj	112.56					g/g-mole				
	Т	10					C				
	Qs	0.021					acfm				
Mass emission rate	of halogen a		Σ(C _j * L _{j,i} * M _{j,i}) kg/hr		ed vent stream	based on Ehale	stnd m3/min (Group 2 CPV if <0.005 scm/min				
Mass emission rate	of halogen a E _{halogen} = s E _{HAP} =	atoms = $K_2 * Q_s * \sum_{0.00033}^{+}$ = $K_2 * (\sum (C_j * 0.00104)$	kg/hr * M _j)) * Q _s kg/hr		ed vent stream	based on Ehale					
	of halogen a E _{halogen} = s E _{HAP} =	atoms = $K_2 * Q_s * \sum_{0.00033}^{+}$ = $K_2 * (\sum (C_j * \sum_{0.00033}^{+}))$	kg/hr * M _j)) * Q _s kg/hr * M _{j)}) * Q _s		ed vent stream	based on Ehale					
Support calculation	of halogen E _{halogen} = s E _{HAP} = E _{TOC} = H _T =	atoms = $K_2 * Q_s * \sum_{0.00033}^{\circ}$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3		ed vent stream	based on Ehald					
Support calculation	of halogen = E _{halogen} = s E _{HAP} = E _{TOC} = H _T = n 40 CFR, Pa	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws})		ed vent stream						
Support calculation	of halogen a E _{halogen} = s E _{HAP} = E _{TOC} = H _T = n 40 CFR, Pa	atoms = $K_2 * Q_s * \sum_{0.00033}^{*} 0.00033$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_1 * (\Sigma C_2)^* 0.75526$ art 63, Subpa = Flare	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1)	(non-halogenat	ed vent stream	(non-halogena	ogen <0.45 kg/hr) ted vent stream)				
Support calculation	of halogen = E _{halogen} = s E _{HAP} = E _{TOC} = H _T = n 40 CFR, Pa Case 1 Case 2	atoms = $K_2 * Q_s * \sum_{0.00033}^{*} 0.00033$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_1 * (\Sigma C_2 * 0.00104)$ = $K_1 * (\Sigma C_3 * 0.00104)$ = Flare = Flare = Thermal In	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% F	(non-halogenat	ed vent stream	(non-halogena (non-halogena	ogen <0.45 kg/hr) ted vent stream) ted vent stream)				
Support calculation	of halogen E _{halogen} = s E _{HAP} = E _{TOC} = H _T = n 40 CFR, Pa Case 1 Case 2 Case 3	atoms = $K_2 * Q_s * \sum_{0.00033}^{+} 0.00033$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa = Flare = Thermal In = Thermal In	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1)	(non-halogenat neat recovery heat recovery	ed vent stream	(non-halogena (non-halogena	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation	of halogen E _{halogen} = s E _{HAP} = E _{TOC} = H _T = n 40 CFR, Pa Case 1 Case 2 Case 3	atoms = $K_2 * Q_s * \sum_{0.00033}^{+} 0.00033$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa = Flare = Thermal In = Thermal In	kg/hr [*] M _j)) * Q _s kg/hr [*] M _j) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S	(non-halogenat neat recovery heat recovery Scrubber		(non-halogena (non-halogena (non-halogena (halogenated v	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation	of halogen E _{halogen} = s E _{HAP} = E _{TOC} = H _T = n 40 CFR, Pa Case 1 Case 2 Case 3	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In	kg/hr $(M_j) + Q_s$ kg/hr $(M_j) + Q_s$ kg/hr $(M_j) + (1 - B_{ws})$ MJ/m3 art G, Table 1) cinerator, 0% H	(non-halogenat neat recovery heat recovery	ed vent stream Case 3 2.519	(non-halogena (non-halogena (non-halogena	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation	of halogen E _{halogen} = s E _{TOC} = H _T = n 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_1 * (\Sigma C_1 * 0.75526$ art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02	Case 3 2.519 1.18E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation	of halogen Ehalogen s EHAP ETOC = HT = h 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_1 * (\Sigma C_2)^* 0.75526$ art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = Thermal In = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation	of halogen E _{halogen} = s E _{TOC} = H _T = n 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_1 * (\Sigma C_2)^* 0.75526$ art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = Thermal In = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02	Case 3 2.519 1.18E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation	of halogen Ehalogen s EHAP ETOC = H _T = n 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_2 * (\Sigma(C_1)^* 0.00104$ = $K_1 * (\Sigma C_2)^* 0.75526$ art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = Thermal In = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation: Coefficients (from	of halogen Ehalogen s EHAP ETOC = HT an 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa = Flare = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation: Coefficients (from	of halogen Ehalogen s EHAP ETOC = HT an 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa = Flare = Thermal In = Thermal In = = = =	kg/hr * M _i)) * Q _s kg/hr * M _i)) * Q _s kg/hr H _i) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% f cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * f	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP}	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02	(non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation: Coefficients (from	of halogen Ehalogen s EHAP ETOC = HT an 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa = Flare = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * H Case 1 1863.1	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 2441.9	(non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 3856.4	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation: Coefficients (from	of halogen Ehalogen s EHAP ETOC = HT an 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa = Flare = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * H Case 1 1863.1	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 1463.92 t TRE value for	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 2441.9 non-halogenat	(non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 3856.4	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				
Support calculation: Coefficients (from	of halogen Ehalogen s EHAP ETOC = HT an 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	atoms = $K_2 * Q_s * \sum_{0.00033} 0.00033$ = $K_2 * (\Sigma(C_1) * 0.00104$ = $K_2 * (\Sigma(C_1 * 0.00104))$ = $K_1 * (\Sigma C_1 * 0.75526)$ art 63, Subpa = Flare = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * H Case 1 1863.1	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 1463.92	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 2441.9 non-halogenat	(non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 3856.4	ogen <0.45 kg/hr) ted vent stream) ted vent stream) ted vent stream)				

Calculation	n No.	Sheet	
By:	Date:	Project No.	
Chkd. By:	Date:	Project:	
Subject: LE-309 Del	hydration Tower Condenser		

Assumptions	1) Water vapor content, compound concentration, net heat of combusion, temperature, and								
Variables	B _{ws}	= Water con	tent of vent stre	eam (% by volun	ne)				
	C _j = Concentration of compound j in vent stream (ppmv)								
	E _{HAP} = Emission rate of total organic HAP (kg/hr)								
	E_{TOC} = Emission rate of TOC (minus methane and ethane) (kg/hr)								
	H_i = Net heat of combustion of compound j (kcal/g-mole)								
	Η _T	= Net heating	g value (MJ/cu	bic meter)					
	L _{i.i}	= Number of	atoms of halo	gen i in compour	nd j (g/g-mole)				
	M _{i.i}	= Molecular	weight of halog	ien i in compoun	id į (kg/kg-mole	:)			
	Mj,i	= Molecular	weight of comp	ound j (g/g-mole	e)				
	Т	= Vent strea	m temperature	(F)					
	Qs	= Vent strea	m flow (dry stn	d cubic meter/m	on)				
• • •	K				<i>"</i>				
Constants	K ₁		(g-mole/m3)(,			art G, Section 115)		
	K ₂		(kg-mole/m3)	, , , ,			art G, Section 115)		
Input data	B _{ws}	MCB 0	Inerts (N2)	Chemical 3	Chemical 4	Chemical 5	%		
	C _i	9199				-			
	Uj Hi	711.2				-	ppmv kcal/mol		
	,	1				-	halogen atom(s)		
	L _{j,i} M _{i,i}								
	, ,.	35.45					g/g-mole		
	М _ј т	112.56 10					g/g-mole		
		2.416					acfm		
	Qs	0.0697					stnd m3/min (Group 2 CPV if <0.005 scm/min)		
		0.0001		I					
Mass emission rate of	halogen	atoms							
	E _{halogen}	= K ₂ * Q _s *∑	$\sum (C_j * L_{j,i} * M_{j,i})$						
	=	0.05656	kg/hr	(non-halogenat	ed vent stream	based on Ehale	ogen <0.45 kg/hr)		
Support calculations									

Support calculations

$$\begin{split} \mathsf{E}_{\mathsf{HAP}} &= \mathsf{K}_2 * (\Sigma(\mathsf{C}_j * \mathsf{M}_j)) * \mathsf{Q}_{\mathsf{s}} \\ &= 0.17957 \; \mathsf{kg/hr} \\ \mathsf{E}_{\mathsf{TOC}} &= \mathsf{K}_2 * (\Sigma(\mathsf{C}_j * \mathsf{M}_j)) * \mathsf{Q}_{\mathsf{s}} \\ &= 0.17957 \; \mathsf{kg/hr} \end{split}$$

$$H_{T} = K_{1} * (\sum C_{j} * H_{j}) * (1 - B_{ws})$$

= 1.13833 MJ/m3

Coefficients (from 40 CFR, Part 63, Subpart G, Table 1)

Case 1 = Flare	(non-halogenated vent stream)		
Case 2 = Thermal Incinera	(non-halogenated vent stream)		
Case 3 = Thermal Incinera	tor, 70% heat rec	overy	(non-halogenated vent stream)
Case 4 = Thermal Incinera	tor and Scrubber		(halogenated vent stream)
C	ase 1 Cas	e 2 Case 3	Case 4

	Case 1	Case 2	Case 3	Case 4
a =	1.935	1.492	2.519	3.995
b =	3.66E-01	6.27E-02	1.18E-02	5.20E-02
c =	-7.69E-03	3.18E-02	1.30E-02	-1.77E-03
d =	-7.33E-04	-1.16E-03	4.79E-02	9.70E-04

TRE calculation

TRE = (a + b * Q_s + c * H_T + d * E_{TOC})/E_{HAP}

Case 1	Case 2	Case 3	Case 4
10.9	8.53	14.2	22.3
Choose lowest	TRE value for r	non-halogenate	d vent system

Chkd. By:		Date:			Project No				
Subject: LE-	330 Recycle I	Date: MCB Storage	e Tank Conden	ser	Project				
Assumptions	,	•		ound concentrat	,	f combusion, te	mperature, and		
Variables	B _{ws} = Water content of vent stream (% by volume) C _i = Concentration of compound j in vent stream (ppmv)								
	,		-	anic HAP (kg/hr)					
				nus methane an f compound j (ko		hr)			
	,		g value (MJ/cul		ai/g-mole)				
	$L_{j,i}$	= Number of	atoms of halog	gen i in compour					
				en i in compoun ound j (g/g-mole		e)			
	T	= Vent strear	m temperature	(F)					
	Qs	= Vent strear	n flow (dry stno	d cubic meter/m	on)				
Constants	K ₁		(g-mole/m3)(l				part G, Section 115)		
	K ₂	2.49E-06 MCB	(kg-mole/m3) Inerts (N2)		(from 40 CFF Chemical 4		part G, Section 115)		
Input data	B _{ws}	0					%		
	C _j H _i	8630 711.2					ppmv kcal/mol		
	L _{i,i}	1					halogen atom(s)		
	M _{j,i}	35.45					g/g-mole		
	Mj T	112.56 10					g/g-mole C		
	Q	0.499					acfm		
	_	0.0144					stnd m3/min (Group 2 CPV if <0.005 scm/min		
Mass emission rate	-		∑(Cj * Lj,i * Mj,i)						
Mass emission rate Support calculatior	E _{halogen} = ns E _{HAP} =	$= K_{2} * Q_{s} * \sum_{0.01096}$ $= K_{2} * (\sum(C_{j})^{*})$ 0.03480	kg/hr f M _j)) * Q _s kg/hr		ed vent stream	h based on Ehal	logen <0.45 kg/hr)		
	E _{halogen} = = E _{HAP} = E _{TOC} =	$= K_{2} * Q_{s} * \sum_{0.01096} 0.01096$ $= K_{2} * (\Sigma(C_{1} * 0.03480))$ $= K_{2} * (\Sigma(C_{1} * 0.03480))$	kg/hr ^r M _j)) * Q _s kg/hr ^r M _j)) * Q _s kg/hr		ed vent stream	based on Ehal	_		
Support calculatior	E _{halogen} = = 18 E _{HAP} = E _{TOC} = H _T =	$= K_{2} * Q_{s} * \sum_{0.01096} 0.01096$ $= K_{2} * (\Sigma(C_{1}) * 0.03480)$ $= K_{2} * (\Sigma(C_{1}) * 0.03480)$ $= K_{1} * (\Sigma C_{1}) * 1.06796$	kg/hr f M _j)) * Q _s kg/hr f M _j)) * Q _s kg/hr H _j) * (1 - B _{ws})		ed vent stream	h based on Ehal	_		
Support calculatior	E _{halogen} = = 18 E _{HAP} = E _{TOC} = H _T =	$= K_{2} * Q_{s} * \sum_{0.01096}$ $= K_{2} * (\Sigma(C_{j})^{*})$ $= K_{2} * (\Sigma(C_{j})^{*})$ $= K_{2} * (\Sigma(C_{j})^{*})$ $= K_{1} * (\SigmaC_{j})^{*}$ 1.06796 art 63, Subpart	kg/hr f M _j)) * Q _s kg/hr M _j) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3		ed vent stream		_		
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3	$= K_{2} * Q_{s} * \sum_{0.01096}$ $= K_{2} * (\sum(C_{1} * 0.03480))$ $= K_{2} * (\sum(C_{1} * 0.03480))$ $= K_{1} * (\sum C_{1} * 0.03480)$ $= K_{1} * (\sum C_{1} * 0.03480)$ $= K_{1} * (\sum C_{1} * 0.03480)$ $= F_{1} * (\sum C_{1} * 0.03480)$ $= F_{1} = $	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% f	(non-halogenation neat recovery heat recovery	ed vent stream	(non-halogena (non-halogena	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)		
Support calculatior	$E_{halogen}$ = 18 E_{HAP} = E_{TOC} = H_T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a	 = K₂ * Q_s *Σ 0.01096 = K₂ * (Σ(C_j * 0.03480 = K₂ * (Σ(C_j * 0.03480 = K₁ * (ΣC_j * 1.06796 art 63, Subpate = Flare = Thermal In = Thermal In = Thermal In = Thermal In 	kg/hr (M_j) * Q _s kg/hr (M_j) * Q _s kg/hr (H_j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935	(non-halogenation neat recovery heat recovery Scrubber Case 2 1.492	Case 3 2.519	(non-halogena (non-halogena (non-halogena (halogenated Case 4 3.995	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)		
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c	$= K_{2} * Q_{s} * \sum_{0.01096}$ $= K_{2} * (\sum(C_{1})^{*}, 0.03480)$ $= K_{2} * (\sum(C_{1})^{*}, 0.03480)$ $= K_{1} * (\sum C_{1})^{*}, 1.06796$ art 63, Subpate of the second	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenation neat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated Case 4 3.995 5.20E-02 -1.77E-03	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)		
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b	$= K_{2} * Q_{s} * \sum_{0.01096}$ $= K_{2} * (\sum(C_{1})^{*}, 0.03480)$ $= K_{2} * (\sum(C_{1})^{*}, 0.03480)$ $= K_{1} * (\sum C_{1})^{*}, 1.06796$ art 63, Subpate of the second	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01	(non-halogenation neat recovery heat recovery Scrubber Case 2 1.492 6.27E-02	Case 3 2.519 1.18E-02	(non-halogena (non-halogena (non-halogena (halogenated Case 4 3.995 5.20E-02	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)		
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	$= K_{2} * Q_{s} * \sum_{0.01096} \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = Flare \\ = Thermal In \\ = Thermal In \\ = Thermal In \\ = = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated Case 4 3.995 5.20E-02 -1.77E-03	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)		
Support calculatior Coefficients (fro	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	$= K_{2} * Q_{s} * \sum_{0.01096} \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = Flare \\ = Thermal In \\ = Thermal In \\ = Thermal In \\ = = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	kg/hr ^f M _i)) * Q _s kg/hr ^f M _i)) * Q _s kg/hr H _i) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% f cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated Case 4 3.995 5.20E-02 -1.77E-03	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)		
Support calculatior Coefficients (fro	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	$= K_{2} * Q_{s} * \sum_{0.01096} \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = Flare \\ = Thermal In \\ = Thermal In \\ = Thermal In \\ = = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	kg/hr $(M_j)) * Q_s$ kg/hr $(M_j)) * Q_s$ kg/hr $(H_j) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * B Case 1 55.5	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 43.88	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 72.8	(non-halogena (non-halogena (non-halogena (halogenated Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 114.8	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) vent stream)		
Support calculatior Coefficients (fro	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	$= K_{2} * Q_{s} * \sum_{0.01096} \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = Flare \\ = Thermal In \\ = Thermal In \\ = Thermal In \\ = = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	kg/hr $(M_j)) * Q_s$ kg/hr $(M_j)) * Q_s$ kg/hr $(H_j) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * B Case 1 55.5	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 43.88 tt TRE value for	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 72.8 non-halogenat	(non-halogena (non-halogena (non-halogena (halogenated Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 114.8	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) vent stream)		
Support calculatior Coefficients (fro	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 a b c d	$= K_{2} * Q_{s} * \sum_{0.01096} \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{2} * (\Sigma(C_{j} * 0.03480)) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = K_{1} * (\Sigma C_{j} * 1.06796) \\ = Flare \\ = Thermal In \\ = Thermal In \\ = Thermal In \\ = = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	kg/hr $(M_j)) * Q_s$ kg/hr $(M_j)) * Q_s$ kg/hr $(H_j) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * B Case 1 55.5	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 43.88	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 72.8 non-halogenat	(non-halogena (non-halogena (non-halogena (halogenated Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 114.8	logen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) vent stream)		

	Calculation No.		-		Shee					
By: Chkd. By:		Date: Date:		-	Project No. Project					
	E-405 Extractio		Condenser	-	FIOJECL	·				
j <u>_</u>										
Assumptions	1)	Water vapor	content, comp	ound concentrat	ion, net heat of	f combusion, ter	nperature, and			
Variables	B _{ws} = Water content of vent stream (% by volume)									
	C_j = Concentration of compound j in vent stream (ppmv)									
	E _{HAP} = Emission rate of total organic HAP (kg/hr)									
	E _{TOC} = Emission rate of TOC (minus methane and ethane) (kg/hr)									
	H_j = Net heat of combustion of compound j (kcal/g-mole)									
	H_T = Net heating value (MJ/cubic meter)									
	,,			gen i in compour						
	,,			jen i in compoun		e)				
	-			ound j (g/g-mole	e)					
			n temperature		>					
	Qs	= vent strea	n flow (ary stre	d cubic meter/m	on)					
Constants	K ₁	1 74E-07	(g-mole/m3)(M l/kcal)/ppm	(from 40 CER	Part 63 Subo	art G, Section 115)			
Constants						•	· · · · · ·			
	K ₂	Z.49E-06 MCB	(kg-mole/m3)	Chemical 3			art G, Section 115)			
Input data	B _{ws}	0	Inerts (N2)	Chemical 5	Chemical 4	Chemical 5	%			
Input data	Ci									
-	Cj Hi	3122					ppmv			
-		711.2					kcal/mol			
-	L _{j,i}	1					halogen atom(s)			
	M _{j,i}	35.45					g/g-mole			
	Mj	112.56					g/g-mole			
-	Т	10					C			
	Qs	0.546					acfm			
L		0.0157					stnd m3/min (Group 2 CPV if <0.005 scm/min)			
Support calculati	=		∑(C _j * L _{j,i} * M _{j,i}) kg/hr		ed vent stream	based on Ehald	ogen <0.45 kg/hr)			
Support calculati		= K ₂ * (∑(C _j *	^r M ₂)) * Q ₂							
	-nar =									
	E _{TOC}	= K ₂ * (∑(C _i *	•							
	=	0.01377								
Coefficients (f	H _T = rom 40 CFR, P	0.38635								
	0 1					(4- d			
	Case 3	= Thermal In = Thermal In	cinerator, 0% I cinerator, 70% cinerator and S	heat recovery		(non-halogena	ted vent stream) ted vent stream) ted vent stream) <i>v</i> ent stream)			
			Case 1	Case 2	Case 3	Case 4				
	а	=	1.935	1.492	2.519	3.995				
	b	=	3.66E-01	6.27E-02	1.18E-02	5.20E-02				
		=	-7.69E-03	3.18E-02	1.30E-02	-1.77E-03				
	d	=	-7.33E-04	-1.16E-03	4.79E-02	9.70E-04				
TRE calculation	TRE	= (a + b * Q _s	+ c * H _T + d * I	E _{TOC})/E _{HAP}						
			_	_		_				
			Case 1 140.7 Choose lowes	Case 2 109.29 st TRE value for	Case 3 183.3 non-halogenate	Case 4 290.1 ed vent system				
				109.29)					

	Calculation No.				Sheet		
By:		Date:		-	Project No.		
Chkd. By: Subject:	LD-430	Date:		-	Project:		
	<u>EB-400</u>						
Assumptions	1)	Water vapor	content, comp	ound concentrat	ion, net heat of	combusion, ter	nperature, and
Variables	B _{ws}	= Water con	tent of vent stre	eam (% by volum	ne)		
	,			nd j in vent strea			
			-	anic HAP (kg/hr)			
				inus methane an		ır)	
	,			f compound j (kc	al/g-mole)		
			g value (MJ/cul				
				gen i in compour jen i in compoun		`	
				ound j (g/g-mole)	
			m temperature	,	·)		
	Qs	= Vent strea	m flow (dry stn	d cubic meter/mo	on)		
0	K	4 745 07			// A0.055	D 100 0 1	
Constants	K1		(g-mole/m3)(•	art G, Section 115)
	K ₂	2.49E-06 MCB	(kg-mole/m3)	Chemical 3	Chemical 4		art G, Section 115)
Input data	B _{ws}	0		Onerniour o	Unernioar 4	Onerniedi 5	%
•	Ci	25633					ppmv
	H _j	711.2					kcal/mol
	L _{j,i}	1					halogen atom(s)
	M _{j,i}	35.45					g/g-mole
	Mj	112.56					g/g-mole
	Т	10					C _
	Qs	0.13					acfm
		0.0037					stnd m3/min (Group 2 CPV if <0.005 scm/min)
Mass emission	rate of halogen	atoms					
	E _{halogen}		∑(C _j * L _{j,i} * M _{j,i})				
	=	0.00848	kg/hr	(non-halogenate	ed vent stream	based on Ehalo	ogen <0.45 kg/hr)
Support calcul	ations						
		= K ₂ * (∑(C _j	* M _j)) * Q _s				
		0.02693	-				
		$= K_2 * (\Sigma(C_j))$					
	=	0.02693	kg/nr				
	Η _T	= K ₁ * (∑C _i *	H _j) * (1 - B _{ws})				
	=	3.17211	MJ/m3				
Coefficients	(from 40 CFR, Pa	art 63, Subpa	art G, Table 1)				
	Case 1	= Flare				(non-halogena	ted vent stream)
	Case 2	= Thermal In	icinerator, 0% ł			(non-halogena	ted vent stream)
				heat recovery			ted vent stream)
	Case 4	- i nermai In	cinerator and S	Scrudder		(halogenated v	en sream)

	Case 1	Case 2	Case 3	Case 4
a =	1.935	1.492	2.519	3.995
b =	3.66E-01	6.27E-02	1.18E-02	5.20E-02
c =	-7.69E-03	3.18E-02	1.30E-02	-1.77E-03
d =	-7.33E-04	-1.16E-03	4.79E-02	9.70E-04

TRE calculation

TRE = (a + b * Q_s + c * H_T + d * E_{TOC})/ E_{HAP}

Case 1	Case 2	Case 3	Case 4
71.0	59.16	95.1	148.2
Choose lowest	TRE value for i	non-halogenate	d vent system

		Date: Date:			Project No.		
Chkd. By: Subject: <u>LE</u> ·	-467 Product [Project		
Assumptions	1) '	Water vapor	content, comp	ound concentrat	ion, net heat of	combusion, ter	mperature, and
/ariables				am (% by volum			
	,			nd j in vent strea anic HAP (kg/hr)	im (ppmv)		
				nus methane an	d ethane) (kg/h	nr)	
				f compound j (ko		,	
	H _T :	= Net heating	g value (MJ/cul	pic meter)			
				gen i in compour			
	,,			en i in compoun		2)	
	-		m temperature	ound j (g/g-mole (F)	;)		
	Qs	= Vent strear	m flow (dry stno	d cubic meter/me	on)		
Constants	K ₁	1.74E-07	(g-mole/m3)(I	MJ/kcal)/ppm	(from 40 CFR	, Part 63, Subp	art G, Section 115)
	K ₂		(kg-mole/m3)		(from 40 CFR	, Part 63, Subp	art G, Section 115)
		MCB	Inerts (N2)	Chemical 3	Chemical 4	Chemical 5	
nput data	B _{ws}	0					%
	C _j Hi	6474 711.2					ppmv kcal/mol
	L _{j,i}	1					halogen atom(s)
	–,, M _{i,i}	35.45					g/g-mole
	Mj	112.56					g/g-mole
	Т	10					c
	Qs	2.055					acfm
Mass emission rate	e of halogen a E _{halogen} =		∑(C _j * L _{j,i} * M _{j,i}) kg/hr		ed vent stream	based on Ehal	stnd m3/min (Group 2 CPV if <0.005 scn ogen <0.45 kg/hr)
Mass emission rate	e of halogen a E _{halogen} = ns E _{HAP} =	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\sum (C_j * 0.10750)$	kg/hr * M _j)) * Q _s kg/hr		ed vent stream	based on Ehal	_
	e of halogen a E _{halogen} = ns E _{HAP} =	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\sum (C_j * \sum_{1}^{2} (C_j + C_j + \sum_{1}^{2} (C_j + \sum_{1}^{2} (C_j + C_j + \sum_{1}^{2} (C_j + C_j + C_j))))))))))$	kg/hr * M _j)) * Q _s kg/hr * M _{j)}) * Q _s		ed vent stream	based on Ehale	_
Support calculatio	e of halogen a $E_{halogen} =$ ns $E_{HAP} =$ $E_{TOC} =$	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1) * 0.10750)$ = $K_2 * (\Sigma(C_1) * 0.10750)$ = $K_1 * (\Sigma C_1 * 0.80113)$	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3		ed vent stream	based on Ehal	_
Support calculatio	e of halogen a $E_{halogen} =$ ns $E_{HAP} =$ $E_{TOC} =$ $H_{T} =$ pom 40 CFR, Pa	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_1 * (\Sigma C_1 *$ 0.80113 art 63, Subparts	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3		ed vent stream		ogen <0.45 kg/hr)
Support calculatio	e of halogen a $E_{halogen} =$ ms $E_{HAP} =$ $E_{TOC} =$ $H_T =$ e_T	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_j^* 0.10750))$ = $K_2 * (\Sigma(C_j^* 0.10750))$ = $K_1 * (\Sigma C_j * 0.80113)$ art 63, Subpa = Flare = Thermal In	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% f	(non-halogenat	ed vent stream	(non-halogena (non-halogena	ogen <0.45 kg/hr) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen} =$ ans $E_{HAP} =$ $E_{TOC} =$ $H_T =$ com 40 CFR, Pa Case 1 = Case 2 = Case 3 =	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*)$ 0.10750 = $K_2 * (\Sigma(C_1)^*)$ 0.10750 = $K_1 * (\Sigma C_1 *)$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1)	(non-halogenation neat recovery heat recovery	ed vent stream	(non-halogena (non-halogena	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen} =$ ms $E_{HAP} =$ $E_{TOC} =$ $H_T =$ $H_$	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*)$ 0.10750 = $K_2 * (\Sigma(C_1)^*)$ 0.10750 = $K_1 * (\Sigma C_1 *)$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In	kg/hr $(M_j) + Q_s$ kg/hr $(M_j) + Q_s$ kg/hr $(M_j) + (1 - B_{ws})$ MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S	(non-halogenation neat recovery heat recovery Scrubber		(non-halogena (non-halogena (non-halogena (halogenated v	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen} =$ ms $E_{HAP} =$ $E_{TOC} =$ $H_T =$ $H_$	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_1 * (\Sigma C_1)^*$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In	kg/hr $(M_j) (M_s) (M_$	(non-halogenation neat recovery heat recovery	ed vent stream Case 3 2.519	(non-halogena (non-halogena (non-halogena	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen}$ = ms E_{HAP} = E_{TOC} = H_T = com 40 CFR, Pa Case 1 = Case 2 = Case 3 = Case 4 = b =	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_j^* 0.10750))$ = $K_2 * (\Sigma(C_j^* 0.10750))$ = $K_1 * (\Sigma C_j^* 0.80113)$ art 63, Subpate = Flare = Thermal In = Thermal In = Thermal In = Thermal In = Thermal In	kg/hr * M_{j})) * Q_{s} kg/hr * M_{j}) * Q_{s} kg/hr H_{j}) * (1 - B_{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01	(non-halogenation neat recovery heat recovery Scrubber Case 2 1.492 6.27E-02	Case 3 2.519 1.18E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen} =$ ans $E_{HAP} =$ $E_{TOC} =$ $H_T =$ case 1 = Case 2 = Case 3 = Case 4 = Case 4 =	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_j^* 0.10750))$ = $K_2 * (\Sigma(C_j^* 0.10750))$ = $K_1 * (\Sigma C_j * 0.80113)$ art 63, Subpation - Subp	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935	(non-halogenation neat recovery heat recovery Scrubber Case 2 1.492	Case 3 2.519	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen} =$ ans $E_{HAP} =$ $E_{TOC} =$ $H_T =$ com 40 CFR, Pa Case 1 = Case 2 = Case 3 = Case 4 = Case 4 = b = c =	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_j^* 0.10750))$ = $K_2 * (\Sigma(C_j^* 0.10750))$ = $K_1 * (\Sigma C_j * 0.80113)$ art 63, Subpation - Subp	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenation meat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen}$ = ns E_{HAP} = E_{TOC} = H_T = H_T = case 1 Case 1 Case 2 Case 3 Case 4 = Case 4 Case 4	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_1 * (\Sigma C_1 *$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenation (non-halogenation (non-halogenation) heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen}$ = ns E_{HAP} = E_{TOC} = H_T = H_T = case 1 Case 1 Case 2 Case 3 Case 4 = Case 4 Case 4	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_1 * (\Sigma C_1 *$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = = = =	kg/hr * M _i)) * Q _s kg/hr * M _i)) * Q _s kg/hr H _i) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04	(non-halogenation (non-halogenation (non-halogenation) heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen}$ = ns E_{HAP} = E_{TOC} = H_T = H_T = case 1 Case 1 Case 2 Case 3 Case 4 = Case 4 Case 4	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_1 * (\Sigma C_1 *$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * E Case 1 18.1	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 14.15	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 23.6	(non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 37.2	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen}$ = ns E_{HAP} = E_{TOC} = H_T = H_T = case 1 Case 1 Case 2 Case 3 Case 4 = Case 4 Case 4	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_1 * (\Sigma C_1 *$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * E Case 1 18.1	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 14.15 t TRE value for	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 23.6 non-halogenate	(non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 37.2	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen}$ = ns E_{HAP} = E_{TOC} = H_T = H_T = case 1 Case 1 Case 2 Case 3 Case 4 = Case 4 Case 4	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_1 * (\Sigma C_1 *$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * E Case 1 18.1	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 14.15	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 23.6 non-halogenate	(non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 37.2	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)
Support calculatio	e of halogen a $E_{halogen}$ = ns E_{HAP} = E_{TOC} = H_T = H_T = case 1 Case 1 Case 2 Case 3 Case 4 = Case 4 Case 4	atoms = $K_2 * Q_s * \sum_{0.03385}$ = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_2 * (\Sigma(C_1)^*$ 0.10750 = $K_1 * (\Sigma C_1 *$ 0.80113 art 63, Subpa = Flare = Thermal In = Thermal In = Thermal In = = = =	kg/hr * M _j)) * Q _s kg/hr * M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * E Case 1 18.1	(non-halogenation heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 14.15 t TRE value for	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 23.6 non-halogenate	(non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 37.2	ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)

Chkd. By: Subject: <u>LE-477</u> Assumptions Variables	Product Dehydrat	ate: ion Condenser		Project		
Assumptions	*	ion condensei				
	1) Water va					
Variables	,	apor content, comp	ound concentra	tion, net heat o	f combusion, te	emperature, and
		content of vent stre ntration of compou				
	,	on rate of total orga	-			
		on rate of TOC (mi			hr)	
		at of combustion of				
	$H_T = Net he$	ating value (MJ/cul	pic meter)			
	L _{j,i} = Numbe	er of atoms of halog	jen i in compou	nd j (g/g-mole)		
	M _{j,i} = Molecu	ular weight of halog	en i in compour	nd j (kg/kg-mole	e)	
	-	ular weight of comp		e)		
		tream temperature		>		
	$Q_s = Vent s$	tream flow (dry stno	d cubic meter/m	ion)		
Constants	K ₁ 1.74E	E-07 (g-mole/m3)(I	MJ/kcal)/ppm	(from 40 CFF	R. Part 63. Subr	part G, Section 115)
		E-06 (kg-mole/m3)				part G, Section 115)
	MCE		Chemical 3	Chemical 4	-	
Input data	B _{ws} 0					%
	C _j 6468	3				ppmv
	H _j 711.2	2				kcal/mol
	L _{j,i} 1					halogen atom(s)
	M _{j,i} 35.48	5				g/g-mole
	M _j 112.5	6				g/g-mole
	T 10				-	C
	Q _s 2.16					acfm
	0.002					stnd m3/min (Group 2 CPV if <0.005 scm/min
Support calculations	E _{TOC} = K ₂ * (Σ	288 kg/hr				
	H _T = K ₁ * (Σ	[C _j * H _j) * (1 - B _{ws})				
Coefficients (from 40		0037 MJ/m3 ubpart G, Table 1)				
	Case 1 = Flare				(non-halogen	ated vent stream)
		al Incinerator, 0% h				ated vent stream)
		al Incinerator, 70% al Incinerator and S	,		(halogenated	ated vent stream) vent stream)
		Case 1	Case 2	Case 3	Case 4	
	a =	1.935	1.492	2.519	3.995	
	b = c =	3.66E-01 -7.69E-03	6.27E-02 3.18E-02	1.18E-02 1.30E-02	5.20E-02 -1.77E-03	
	d =	-7.33E-04	-1.16E-03	4.79E-02	9.70E-04	
TRE calculation	TRE = (a + b	* Q _s + c * H _T + d * E	E _{TOC})/E _{HAP}			
		Case 1	Case 2	Case 3	Case 4	
		17.3	13.48	22.5	35.4	
			t TRE value for			1
			13.48	8		

Calculation	No.	Sheet	
By:	Date:	Project No.	
Chkd. By:	Date:	Project:	
Subject: LE-448 Acid	Extractor		

Assumptions	1)	Water vapor	content, comp	ound concentrat	ion, net heat of	f combusion, te	mperature, and
Variables				am (% by volun			
	,			nd j in vent strea			
	E _{HAP}	= Emission r	ate of total orga	anic HAP (kg/hr))		
	E _{TOC}	= Emission r	ate of TOC (mi	nus methane ar	id ethane) (kg/ł	nr)	
	Hj	= Net heat of	f combustion of	compound j (ko	al/g-mole)		
	H _T	= Net heating	g value (MJ/cut	pic meter)			
	L _{j,i}	= Number of	atoms of halog	jen i in compour	nd j (g/g-mole)		
	$M_{j,i}$	= Molecular	weight of halog	en i in compour	id j (kg/kg-mole	e)	
	-			ound j (g/g-mole	e)		
			n temperature				
	Qs	= vent stream	n flow (ary stno	d cubic meter/m	on)		
Constants	K ₁	1 74F-07	(g-mole/m3)(I	M.I/kcal)/ppm	(from 40 CFR	Part 63 Subp	art G, Section 115)
oonotanto	K ₂		(kg-mole/m3)		-	-	art G, Section 115)
	142	MCB	Inerts (N2)	Chemical 3	Chemical 4	Chemical 5	
Input data	B _{ws}	0		Onerniedi e	Onemical 4	Onerniedi e	- %
input data	Ci	5057					ppmv
	H _i	711.2					kcal/mol
	. '						-
	L _{j,i}	1					halogen atom(s)
	M _{j,i}	35.45					g/g-mole
	Mj	112.56					g/g-mole
	T	10					_C
	Qs	2.8792					acfm
		0.0830					stnd m3/min (Group 2 CPV if <0.005 scm/min)
	rate of halogen E _{halogen} =		∑(C _j * L _{j,i} * M _{j,i}) kg/hr	(non-halogenat	ed vent stream	based on Ehal	ogen <0.45 kg/hr)
Support calcul		K * (E(0.1					
		= K ₂ * (∑(C _j * 0.11764					
		$= K_2 * (\Sigma(C_i)^4)$	•				
	=	0.11764					
		0.11701	Ng/III				
	Η _T	= K ₁ * (∑C _j *	H _j) * (1 - B _{ws})				
	=	0.62578	MJ/m3				
Coefficients	(from 40 CFR, P	art 63, Subpa	art G, Table 1)				
	C	- Flore				(non hologona	stad want atraam)
	Case 1 Case 2		cinerator, 0% h	eat recovery			ated vent stream) ated vent stream)
			cinerator, 70%				ated vent stream)
	Case 4	= Thermal In	cinerator and S	Scrubber		(halogenated)	vent stream)
	2	=	Case 1 1.935	Case 2 1.492	Case 3 2.519	Case 4 3.995	
		=	3.66E-01	6.27E-02	1.18E-02	5.20E-02	
		=	-7.69E-03	3.18E-02	1.30E-02	-1.77E-03	
	d	=	-7.33E-04	-1.16E-03	4.79E-02	9.70E-04	
TDE esteviet	_						
TRE calculation		= (a + b * Q _s	+ c * H _T + d * E	E _{TOC})/E _{HAP}			
			Case 1	Case 2	Case 3	Case 4	
			16.7	12.89	21.5	34.0	
				t TRE value for			
				12.89)		

- -	Calculation No.				Sheet			
By: Chkd. By:		Date: Date:			Project No. Project:			
Subject:	LE-576 Product	Purification V	ent Condenser	- Crude Crystal	lizer			
Assumptions	1)	Water vapor	content, comp	ound concentrat	ion, net heat of	f combusion, ter	nperature, and	
Variables	Bws	= Water cont	ent of vent stre	am (% by volum	ne)			
				nd j in vent strea	-			
				anic HAP (kg/hr)				
	E _{TOC}	= Emission r	ate of TOC (mi	nus methane an	d ethane) (kg/ł	nr)		
	Hj	= Net heat o	f combustion of	f compound j (kc	al/g-mole)			
	Η _T	= Net heating	g value (MJ/cut	pic meter)				
	L _{j,i}	= Number of	atoms of halog	jen i in compour	id j (g/g-mole)			
	$M_{j,i}$	= Molecular	weight of halog	en i in compoun	d j (kg/kg-mole	e)		
	-			ound j (g/g-mole	:)			
			n temperature					
	Qs	= vent strea	n tiow (ary stno	d cubic meter/mo	on)			
Constants	K ₁	1.74E-07	(g-mole/m3)(I	MJ/kcal)/ppm	(from 40 CFR	, Part 63, Subpa	art G, Section 11	15)
	K ₂		(kg-mole/m3)		-		art G, Section 11	
		MCB	Inerts (N2)	Chemical 3	Chemical 4	Chemical 5]	
Input data	B _{ws}	0					%	
	Cj	6431					ppmv	
	Hj	711.2					kcal/mol	
	L _{j,i}	1					halogen atom(s)
	M _{j,i}	35.45					g/g-mole	
	M _j	112.56					g/g-mole	
	Т	10 6.9					C acfm	
	Qs	0.1989					-	(Group 2 CPV if <0.005 scm/min)
Mass emission	rate of halogen E _{halogen} =	= K ₂ * Q _s *∑	∑(C _j * L _{j,i} * M _{j,i}) kg/hr	(non-halogenate	ed vent stream	based on Ehalo	ogen <0.45 kg/hi	r)
Support calcula	E _{HAP} =	= K ₂ * (∑(C _j)	kg/hr [*] M _{j)}) * Q _s					
	Н _т =	-	H _j) * (1 - B _{ws})					
Coefficients	(from 40 CFR, P							
	Case 3	= Thermal In = Thermal In	cinerator, 0% h cinerator, 70% cinerator and S	heat recovery		(non-halogena	ted vent stream) ted vent stream) ted vent stream) vent stream))
	b c	= = =	Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04	Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02	Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04		
TRE calculatior		= (a + b * Q _s	+ c * H _T + d * E	E _{toc})/E _{hap}				
			Case 1	Case 2	Case 3	Case 4		
			5.6 Choose lowes	4.27 t TRE value for	7.1 non-halogenate	11.2 ed vent system		
				4.27				

Chkd. By:		Date:	·		Shee Project No		
		Date:			Project		
Subject: <u>LE-</u>	679						
ssumptions	1)	Water vapor	content, comp	ound concentrat	ion, net heat o	f combusion, ten	nperature, and
/ariables				am (% by volun nd j in vent strea			
	,			anic HAP (kg/hr)			
			-	nus methane an		hr)	
				compound j (ko		1	
	,		g value (MJ/cul		c ,		
	$L_{j,i}$	= Number of	atoms of halog	jen i in compour	nd j (g/g-mole)		
	$M_{j,i}$	= Molecular v	weight of halog	en i in compoun	d j (kg/kg-mole	e)	
	-			ound j (g/g-mole	e)		
			n temperature	(F) 1 cubic meter/m	20)		
	Qs	- vent streat	IT HOW (ury suit		JII)		
Constants	K ₁	1.74E-07	(g-mole/m3)(I	/J/kcal)/ppm	(from 40 CFF	R, Part 63, Subpa	art G, Section 115)
	K ₂	2.49E-06	(kg-mole/m3)	(min/hr)/ppm	(from 40 CFF	R, Part 63, Subpa	art G, Section 115)
		MCB	Inerts (N2)	Chemical 3	Chemical 4	Chemical 5	
Input data	B _{ws}	0					%
	Cj	5101					ppmv
	H _j	711.2 1					kcal/mol
	L _{j,i} M _{i i}	35.45					halogen atom(s)
	Mi Mi	112.56					g/g-mole g/g-mole
	j T	10					C
	Q	8.4					acfm
	Qs	0.2422					stnd m3/min (Group 2 CPV if <0.005 scm/mi
Mass omission rate	of balagan	atoms					-
Mass emission rate	-		Σ(C; * L; ; * M;;)				-
Mass emission rate	-		∑(Cj * L _{j,i} * M _{j,i}) kg/hr	(non-halogenat	ed vent stream	based on Ehald	■ ogen <0.45 kg/hr)
	E _{halogen} =	= K ₂ * Q _s *∑		(non-halogenat	ed vent stream	based on Ehald	gen <0.45 kg/hr)
Mass emission rate Support calculatior	E _{halogen} =	= K ₂ * Q _s *∑ 0.10903	kg/hr	(non-halogenat	ed vent stream	h based on Ehald	ogen <0.45 kg/hr)
	E _{halogen} =	= K ₂ * Q _s *∑	kg/hr M _j)) * Q _s	(non-halogenat	ed vent stream	based on Ehald	ogen <0.45 kg/hr)
	E _{halogen} = ns E _{HAP} =	$= K_2 * Q_s * \sum_{0.10903}^{+}$ $= K_2 * (\sum (C_j *$	kg/hr Mj)) * Q _s kg/hr	(non-halogenat	ed vent stream	based on Ehald	ogen <0.45 kg/hr)
	E _{halogen} = ns E _{HAP} =	$= K_{2} * Q_{s} * \sum_{0.10903}^{3}$ $= K_{2} * (\sum (C_{j} * 0.34620))$	kg/hr M _j)) * Q _s kg/hr M _{j)}) * Q _s	(non-halogenat	ed vent stream	h based on Ehalo	ogen <0.45 kg/hr)
	E _{halogen} = = = E _{HAP} = E _{TOC} =	$= K_{2} * Q_{s} * \sum_{0.10903}^{0}$ $= K_{2} * (\sum(C_{j} * 0.34620))$ $= K_{2} * (\sum(C_{j} * 0.34620))$	kg/hr Mj)) * Q _s kg/hr Mj) * Q _s kg/hr	(non-halogenat	ed vent stream	h based on Ehalo	ogen <0.45 kg/hr)
	E _{halogen} = = = E _{HAP} = E _{TOC} =	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\sum(C_{j} * 0.34620))$ $= K_{2} * (\sum(C_{j} * 0.34620))$ $= K_{1} * (\sum C_{j} * 0.34620)$	kg/hr Mj)) * Q _s kg/hr Mj) * Q _s kg/hr Hj) * (1 - B _{ws})	(non-halogenat	ed vent stream	h based on Ehalo	∎ ogen <0.45 kg/hr)
Support calculatior	E _{halogen} = s E _{HAP} = E _{TOC} = H _T =	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\sum(C_{j} * 0.34620))$ $= K_{2} * (\sum(C_{j} * 0.34620))$ $= K_{1} * (\sum C_{j} * 0.34621)$ $= K_{1} * (\sum C_{j} * 0.63121)$	kg/hr Mj)) * Q _s kg/hr Mj) * Q _s kg/hr Hj) * (1 - B _{ws})	(non-halogenat	ed vent stream	h based on Ehalo	gen <0.45 kg/hr)
Support calculatior	E _{halogen} = 15 E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa	$= K_{2} * Q_{s} * \sum_{0.10903} \\ = K_{2} * (\Sigma(C_{1}) * \\ 0.34620 \\ = K_{2} * (\Sigma(C_{1}) * \\ 0.34620 \\ = K_{1} * (\Sigma(C_{1}) * \\ 0.63121 \\ art 63, Subpa$	kg/hr M_j)) * Q _s kg/hr M_j) * Q _s kg/hr H_j) * (1 - B _{ws}) MJ/m3	(non-halogenat	ed vent stream		
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1	$= K_{2} * Q_{s} * \sum_{0.10903} \\ = K_{2} * (\Sigma(C_{1}) * \\ 0.34620 \\ = K_{2} * (\Sigma(C_{1}) * \\ 0.34620 \\ = K_{1} * (\Sigma C_{1}) * \\ 0.63121 \\ art 63, Subpa \\ = Flare$	kg/hr Mj)) * Q _s kg/hr Mj) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 rt G, Table 1)		ed vent stream	(non-halogenat	ted vent stream)
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2	$= K_{2} * Q_{s} * \sum_{0.10903} X_{0.10903}$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{1} * (\sum C_{1} * 0.63121)$ art 63, Subpate = Flare = Thermal In	kg/hr M_j)) * Q _s kg/hr M_j) * Q _s kg/hr H_j) * (1 - B _{ws}) MJ/m3	neat recovery	ed vent stream	(non-halogenat	
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{1} * (\sum C_{1} * 0.34620)$ $= K_{1} * (\sum C_{1} * 0.63121)$ art 63, Subpations of the second se	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 rt G, Table 1) cinerator, 0% f	neat recovery heat recovery	ed vent stream	(non-halogenat	ted vent stream) ted vent stream) ted vent stream)
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{1} * (\sum C_{1} * 0.34620)$ $= K_{1} * (\sum C_{1} * 0.63121)$ art 63, Subpations of the second se	kg/hr $(M_j)) * Q_s$ kg/hr $(M_j) * Q_s$ kg/hr $(H_j) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S	leat recovery heat recovery Scrubber		(non-halogenat (non-halogenat (non-halogenat (halogenated v	ted vent stream) ted vent stream) ted vent stream)
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\sum(C_{j} * 0.34620))$ $= K_{2} * (\sum(C_{j} * 0.34620))$ $= K_{1} * (\sum C_{j} * 0.63121)$ art 63, Subpate = Flare $= Flare$ $= Thermal In$ $= Thermal In$	kg/hr $(M_j)) * Q_s$ kg/hr $(M_{jj}) * Q_s$ kg/hr $H_j) * (1 - B_{ws})$ MJ/m3 urt G, Table 1) cinerator, 0% h	neat recovery heat recovery	ed vent stream Case 3 2.519	(non-halogenat (non-halogenat (non-halogenat	ted vent stream) ted vent stream) ted vent stream)
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 b	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\sum(C_{1}) * 0.34620)$ $= K_{2} * (\sum(C_{1}) * 0.34620)$ $= K_{1} * (\sum C_{1}) * 0.63121$ art 63, Subpate of the second se	kg/hr $(M_{j})) * Q_{s}$ kg/hr $(M_{j}) * Q_{s}$ kg/hr $(H_{j}) * (1 - B_{ws})$ MJ/m3 rt G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01	heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02	Case 3 2.519 1.18E-02	(non-halogenat (non-halogenat (non-halogenat (halogenated v Case 4 3.995 5.20E-02	ted vent stream) ted vent stream) ted vent stream)
Support calculatior	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, P: Case 1 Case 2 Case 3 Case 4 a b c	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{1} * (\sum C_{1} * 0.34620)$ $= K_{1} * (\sum C_{1} * 0.63121)$ art 63, Subpate of the second secon	kg/hr (M,)) * Q _s kg/hr (M _j) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 rt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02	Case 3 2.519 1.18E-02 1.30E-02	(non-halogenat (non-halogenat (non-halogenat (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ted vent stream) ted vent stream) ted vent stream)
Support calculatior Coefficients (fro	E _{halogen} = 1s E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 b	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{2} * (\sum(C_{1} * 0.34620))$ $= K_{1} * (\sum C_{1} * 0.34620)$ $= K_{1} * (\sum C_{1} * 0.63121)$ art 63, Subpate of the second secon	kg/hr $(M_{j})) * Q_{s}$ kg/hr $(M_{j}) * Q_{s}$ kg/hr $(H_{j}) * (1 - B_{ws})$ MJ/m3 rt G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01	heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02	Case 3 2.519 1.18E-02	(non-halogenat (non-halogenat (non-halogenat (halogenated v Case 4 3.995 5.20E-02	ted vent stream) ted vent stream) ted vent stream)
Support calculatior Coefficients (fro	E _{halogen} = ns E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 b c d	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{1} * (\Sigma C_{1} * 0.63121)$ art 63, Subpate = Flare = Thermal In = Ther	kg/hr (M,)) * Q _s kg/hr (M _j) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 rt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogenat (non-halogenat (non-halogenat (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ted vent stream) ted vent stream) ted vent stream)
Support calculatior	E _{halogen} = ns E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 b c d	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{1} * (\Sigma C_{1} * 0.63121)$ art 63, Subpate = Flare = Thermal In = Ther	kg/hr $(M_{j}) * Q_{s}$ kg/hr $(M_{j}) * Q_{s}$ kg/hr $(H_{j}) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H_{T} + d * E	heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP}	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02	(non-halogenat (non-halogenat (non-halogenat (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04	ted vent stream) ted vent stream) ted vent stream)
Support calculation	E _{halogen} = ns E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 b c d	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{1} * (\Sigma C_{1} * 0.63121)$ art 63, Subpate = Flare = Thermal In = Thermal In = Thermal In = Thermal In = = = = = = = = = = = = = = = = = =	kg/hr ¹ M _j)) * Q _s kg/hr M _j) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 nt G, Table 1) cinerator, 0% f cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04	heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogenat (non-halogenat (non-halogenat (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ted vent stream) ted vent stream) ted vent stream)
Support calculation	E _{halogen} = ns E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 b c d	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{1} * (\Sigma C_{1} * 0.63121)$ art 63, Subpate = Flare = Thermal In = Thermal In = Thermal In = Thermal In = = = = = = = = = = = = = = = = = =	kg/hr (M,)) * Q _s kg/hr (M _j) * (1 - B _{ws}) kg/hr H _j) * (1 - B _{ws}) MJ/m3 rt G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * E Case 1 5.8	heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 ETOC)/EHAP Case 2	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 7.4	(non-halogenat (non-halogenat (non-halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 11.6	ted vent stream) ted vent stream) ted vent stream)
Support calculation	E _{halogen} = ns E _{HAP} = E _{TOC} = H _T = m 40 CFR, Pa Case 1 Case 2 Case 3 Case 4 b c d	$= K_{2} * Q_{s} * \sum_{0.10903}$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{2} * (\Sigma(C_{1} * 0.34620))$ $= K_{1} * (\Sigma C_{1} * 0.63121)$ art 63, Subpate = Flare = Thermal In = Thermal In = Thermal In = Thermal In = = = = = = = = = = = = = = = = = =	kg/hr (M,)) * Q _s kg/hr (M _j) * (1 - B _{ws}) kg/hr H _j) * (1 - B _{ws}) MJ/m3 rt G, Table 1) cinerator, 0% h cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * E Case 1 5.8	eat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 4.41	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 7.4 non-halogenat	(non-halogenat (non-halogenat (non-halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 11.6	ted vent stream) ted vent stream) ted vent stream)

Chkd. By:		Date:			Project No		
	580 Product Puri	Date:	t Condenser	:	Project	:	
Assumptions	1) Wa	iter vapor co	ontent, comp	ound concentrat	ion, net heat o	f combusion, ter	mperature, and
/ariables				am (% by volun			
	,		•	nd j in vent strea	,		
			-	anic HAP (kg/hr) nus methane an		hr)	
			-	f compound j (ko		,	
	,		alue (MJ/cut		al/g-mole)		
		-	-	jen i in compour	nd i (a/a-mole)		
				en i in compoun		e)	
	,			ound j (g/g-mole		,	
			temperature				
	Q _s = V	ent stream	flow (dry stno	d cubic meter/m	on)		
Constants	K ₁	1.74E-07 (a-mole/m3)(I	MJ/kcal)/ppm	(from 40 CFF	R. Part 63. Subp	art G, Section 115)
		-	- · ·	(min/hr)/ppm		· · ·	art G, Section 115)
			Inerts (N2)	Chemical 3	Chemical 4		<u>ר (</u>
nput data	B _{ws}	0					%
	Cj	3752					ppmv
	Hj	711.2					kcal/mol
	$L_{j,i}$	1					halogen atom(s)
	J1-	35.45					g/g-mole
	,	112.56					g/g-mole
	Т	10 16.9					_C acfm
	Q _s	0.4872					stnd m3/min (Group 2 CPV if <0.005 scm/mi
lass emission rate	of halogen ato	ms	C _j * L _{j,i} * M _{j,i}) g/hr		ed vent stream	n based on Ehale	ogen <0.45 kg/hr)
Mass emission rate	of halogen ato E _{halogen} = K = s E _{HAP} = K =	ms 52 * Q _s *∑ ∑(0.16135 kg 52 * (∑(C _j * Μ 0.51231 kg	g/hr 1 _j)) * Q _s g/hr		ed vent stream	h based on Ehald	-
	of halogen ato E _{halogen} = K = s E _{HAP} = K = E _{TOC} = K =	ms ⁵ 2 * Q _s *∑ ∑(0.16135 kg ⁵ 2 * (∑(C _j * N 0.51231 kg 0.51231 kg	g/hr 1 _j)) * Q _s g/hr 1 _{j)}) * Q _s g/hr		ed vent stream	h based on Ehale	-
Support calculation	of halogen ato E _{halogen} = K = s E _{HAP} = K = E _{TOC} = K = H _T = K =	ms $\sum_{i_2} * Q_s * \sum \sum_{i_2} (0.16135 \text{ kg})$ 0.16135 kg 0.51231 kg 0.46427 N	g/hr flj)) * Q _s g/hr flj) * Q _s g/hr) * (1 - B _{ws}) /JJ/m3		ed vent stream	based on Ehale	-
Support calculation	of halogen ato $E_{halogen} = K$ = s $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = n 40 CFR, Part 6	$ms \\ S_2 * Q_s * \sum \sum_{i=2}^{n} (\sum_{j=1}^{n} (\sum_{j=1}^{n$	g/hr flj)) * Q _s g/hr flj) * Q _s g/hr) * (1 - B _{ws}) /JJ/m3		ed vent stream		ogen <0.45 kg/hr)
Support calculation	of halogen ato $E_{halogen} = K$ = s $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = n 40 CFR, Part 6 Case 1 = F	ms $f_2 * Q_s * \sum \sum (Q_s * (Q_s * (Q_s + $	g/hr ¶j)) * Q _s g/hr ¶j) * Q _s g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1)		ed vent stream	(non-halogena	ogen <0.45 kg/hr) ted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = s $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = n 40 CFR, Part 6 Case 1 = F Case 2 = T Case 3 = T	ms ⁵² * Q ₈ *Σ Σ(0.16135 kg ⁵² * (Σ(C _j * M 0.51231 kg ⁵² * (Σ(C _j * M 0.51231 kg 0.51231 kg 0.46427 M 63, Subpart ⁵ lare ⁵ lare	g/hr ¶j)) * Q _s g/hr ¶j)) * Q _s g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1) nerator, 0% f	(non-halogenat neat recovery heat recovery	ed vent stream	(non-halogena (non-halogena	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = s $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = n 40 CFR, Part 6 Case 1 = F Case 2 = T Case 3 = T	ms ⁵² * Q ₈ *Σ Σ(0.16135 kg ⁵² * (Σ(C _j * M 0.51231 kg ⁵² * (Σ(C _j * M 0.51231 kg 0.51231 kg 0.46427 M 63, Subpart ⁵ lare ⁵ lare	g/hr ¶j)) * Q _s g/hr ¶j) * Q _s g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1) herator, 0% h	(non-halogenat neat recovery heat recovery	ed vent stream	(non-halogena (non-halogena (non-halogena	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = s $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ = $M_T = K$ $M_T = K$ $M_$	ms ⁵² * Q ₈ *Σ Σ(0.16135 kg ⁵² * (Σ(C _j * M 0.51231 kg ⁵² * (Σ(C _j * M 0.51231 kg 0.51231 kg 0.46427 M 63, Subpart ⁵ lare ⁵ lare	g/hr f _j)) * Q _s g/hr f _j) * Q _s g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1) herator, 0% h herator, 70% herator and S Case 1 1.935	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492	Case 3 2.519	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = $B_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ = $H_T = K$ = $M_T = K$ $M_T = K$	ms ⁵² * Q ₈ *Σ Σ(0.16135 kg ⁵² * (Σ(C _j * M 0.51231 kg ⁵² * (Σ(C _j * M 0.51231 kg 0.51231 kg 0.46427 M 63, Subpart ⁵ lare ⁵ lare	g/hr ¶j)) * Q _s g/hr ¶j) * Q _s g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1) herator, 0% h herator, 70% herator and S Case 1 1.935 3.66E-01	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02	Case 3 2.519 1.18E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = s $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ = $M_T = K$ $M_T = K$ $M_$	ms ⁵² * Q ₈ *Σ Σ(0.16135 kg ⁵² * (Σ(C _j * M 0.51231 kg ⁵² * (Σ(C _j * M 0.51231 kg 0.51231 kg 0.46427 M 63, Subpart ⁵ lare ⁵ lare	g/hr f _j)) * Q _s g/hr f _j) * Q _s g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1) herator, 0% h herator, 70% herator and S Case 1 1.935	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492	Case 3 2.519	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = $B_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ = $H_T = K$ = $M_T = K$ $M_T = K$ = $M_T = K$ = M	ms ⁵² * Q ₈ *Σ Σ(0.16135 kg ⁵² * (Σ(C _j * M 0.51231 kg ⁵² * (Σ(C _j * M 0.51231 kg 0.51231 kg 0.46427 M 63, Subpart ⁵ lare ⁵ lare	g/hr ¶j)) * Q _s g/hr ¶j) * Q _s g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1) herator, 0% h herator, 70% herator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ = $M_T = K$ =	ms ₅₂ * Q _s *Σ Σ(0.16135 kg 0.51231 kg 0.51231 kg (2 * (Σ(C _j * N) 0.51231 kg 0.46427 N 63, Subpart 'lare 'hermal Incir 'hermal Incir	g/hr ¶j)) * Q _s g/hr ¶j) * Q _s g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1) herator, 0% h herator, 70% herator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ = $M_T = K$ =	ms ₅₂ * Q _s *Σ Σ(0.16135 kg 0.51231 kg 0.51231 kg (2 * (Σ(C _j * N) 0.51231 kg 0.46427 N 63, Subpart 'lare 'hermal Incir 'hermal Incir	g/hr fj)) * Q _s g/hr g/hr) * (1 - B _{ws}) AJ/m3 G, Table 1) herator, 70% herator, 70% herator, 70% case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = S $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ m 40 CFR, Part 6 Case 1 = F Case 2 = T Case 3 = T Case 4 = T a = b = c = d =	ms $f_2 * Q_s * \sum \sum (0, 16135 kg)$ $f_2 * (\sum (C_j * M) (0, 51231 kg)$ $f_2 * (\sum (C_j * M) (0, 51231 kg)$ $f_1 * (\sum (C_j * H_j) (0, 6427 N)$ 0.46427 N f_3 , Subpart Hermal Incir hermal Incir hermal Incir hermal Incir	g/hr f_{j})) * Q _s g/hr f_{j}) * (1 - B _{ws}) J/m3 G, Table 1) herator, 0% h herator, 70% herator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 c * H _T + d * E Case 1 4.1	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 3.00	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 5.0	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 7.8	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = S $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ m 40 CFR, Part 6 Case 1 = F Case 2 = T Case 3 = T Case 4 = T a = b = c = d =	ms $f_2 * Q_s * \sum \sum (0, 16135 kg)$ $f_2 * (\sum (C_j * M) (0, 51231 kg)$ $f_2 * (\sum (C_j * M) (0, 51231 kg)$ $f_1 * (\sum (C_j * H_j) (0, 6427 N)$ 0.46427 N f_3 , Subpart Hermal Incir hermal Incir hermal Incir hermal Incir	g/hr f_{j})) * Q _s g/hr f_{j}) * (1 - B _{ws}) J/m3 G, Table 1) herator, 0% h herator, 70% herator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 c * H _T + d * E Case 1 4.1	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 3.00 t TRE value for	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 5.0 non-halogenat	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 7.8	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)
Support calculation	of halogen ato $E_{halogen} = K$ = S $E_{HAP} = K$ = $E_{TOC} = K$ = $H_T = K$ = $H_T = K$ m 40 CFR, Part 6 Case 1 = F Case 2 = T Case 3 = T Case 4 = T a = b = c = d =	ms $f_2 * Q_s * \sum \sum (0, 16135 kg)$ $f_2 * (\sum (C_j * M) (0, 51231 kg)$ $f_2 * (\sum (C_j * M) (0, 51231 kg)$ $f_1 * (\sum (C_j * H_j) (0, 6427 N)$ 0.46427 N f_3 , Subpart Hermal Incir hermal Incir hermal Incir hermal Incir	g/hr f_{j})) * Q _s g/hr f_{j}) * (1 - B _{ws}) J/m3 G, Table 1) herator, 0% h herator, 70% herator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 c * H _T + d * E Case 1 4.1	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 3.00	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 5.0 non-halogenat	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 7.8	ogen <0.45 kg/hr) tted vent stream) tted vent stream) tted vent stream)

Chkd. By:		ate:		Shee Project No		
		ate:		Project	t:	
Subject: <u>LE-3</u>	68 Recycle MCB Puri	fication - Vent Con	Idenser			
Assumptions	1) Water va	por content, compo	ound concentrat	ion, net heat c	f combusion, te	mperature, and
/ariables		content of vent stre		-		
	,	tration of compour	-			
		n rate of total orga			1 \	
		on rate of TOC (min t of combustion of			iii <i>)</i>	
	,	iting value (MJ/cub		al/g-mole)		
		r of atoms of halog	,	nd i (a/a-mole)		
	,	ar weight of halog				
	,,	ar weight of comp	-			
		eam temperature	. ,			
	Q _s = Vent str	eam flow (dry stno	l cubic meter/m	on)		
Constants	K ₁ 1.74E	-07 (g-mole/m3)(N	/J/kcal)/ppm	(from 40 CFF	R. Part 63. Subp	art G, Section 115)
		-06 (kg-mole/m3)		-	-	art G, Section 115)
	MCB	Inerts (N2)	Chemical 3	Chemical 4		
Input data	B _{ws} 0					%
	C _j 2911					ppmv
	H _j 711.2					kcal/mol
	L _{j,i} 1					halogen atom(s)
	M _{j,i} 35.45					g/g-mole
	M _j 112.56 T 10	,				g/g-mole C
	2.58					acfm
	Q _s 0.0744					stnd m3/min (Group 2 CPV if <0.005 scm/mi
Support calculations	E _{HAP} = K ₂ * (Σ()69 kg/hr				
		C _i * M _i) * Q _s				
	$E_{TOC} = K_2 * (\Sigma)$ = 0.060)69 kg/hr				
Coefficients (from	$E_{TOC} = K_2 * (\Sigma)$ = 0.060 $H_T = K_1 * (\Sigma)$ = 0.360	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3				
Coefficients (from	$E_{TOC} = K_2 * (\Sigma)$ = 0.060 $H_T = K_1 * (\Sigma)$ = 0.360 40 CFR, Part 63, Su	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3			<i>.</i>	
Coefficients (from	$E_{TOC} = K_2 * (\Sigma)$ = 0.060 $H_T = K_1 * (\Sigma)$ = 0.360 40 CFR, Part 63, Su Case 1 = Flare	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1)	eat recoverv			ited vent stream)
Coefficients (from	$E_{TOC} = K_2 * (\sum_{i=0}^{2} 0.060)$ $H_T = K_1 * (\sum_{i=0}^{2} 0.360)$ 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3	heat recovery		(non-halogena	ited vent stream) ited vent stream)
Coefficients (from	$E_{TOC} = K_2 * (\sum_{i=0}^{2} 0.060)$ $H_T = K_1 * (\sum_{i=0}^{2} 0.360)$ 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S	heat recovery crubber	Case 3	(non-halogena (non-halogena (halogenated	ited vent stream) ited vent stream)
Coefficients (from	$E_{TOC} = K_2 * (\Sigma)$ $= 0.060$ $H_T = K_1 * (\Sigma)$ $= 0.360$ 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma Case 4 = Therma a =	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S Case 1 1.935	heat recovery crubber Case 2 1.492	Case 3 2.519	(non-halogena (non-halogena (halogenated) Case 4 3.995	ited vent stream) ited vent stream)
Coefficients (from	$E_{TOC} = K_2 * (\Sigma)$ $= 0.060$ $H_T = K_1 * (\Sigma)$ $= 0.360$ 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma Case 4 = Therma a = b =	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S Case 1 1.935 3.66E-01	heat recovery crubber Case 2 1.492 6.27E-02	2.519 1.18E-02	(non-halogena (non-halogena (halogenated Case 4 3.995 5.20E-02	ited vent stream) ited vent stream)
C oefficients (from	$E_{TOC} = K_2 * (\Sigma)$ $= 0.060$ $H_T = K_1 * (\Sigma)$ $= 0.360$ 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma Case 4 = Therma a =	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S Case 1 1.935	heat recovery crubber Case 2 1.492	2.519	(non-halogena (non-halogena (halogenated) Case 4 3.995	ited vent stream) ited vent stream)
Coefficients (from	$E_{TOC} = K_2 * (\sum)$ = 0.060 H _T = K ₁ * ($\sum)$ = 0.360 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma Case 4 = Therma a = b = c = d =	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04	heat recovery crubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (halogenated) Case 4 3.995 5.20E-02 -1.77E-03	ited vent stream) ited vent stream)
	$E_{TOC} = K_2 * (\sum)$ = 0.060 H _T = K ₁ * ($\sum)$ = 0.360 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma Case 4 = Therma a = b = c = d =	D69 kg/hr C _j * H _j) * (1 - B _{ws}) D24 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 Q _s + c * H _T + d * E	heat recovery crubber 1.492 6.27E-02 3.18E-02 -1.16E-03	2.519 1.18E-02 1.30E-02 4.79E-02	(non-halogena (non-halogena (halogenated 1 3.995 5.20E-02 -1.77E-03 9.70E-04	ited vent stream) ited vent stream)
	$E_{TOC} = K_2 * (\sum)$ = 0.060 H _T = K ₁ * ($\sum)$ = 0.360 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma Case 4 = Therma a = b = c = d =	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04	heat recovery crubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (halogenated) Case 4 3.995 5.20E-02 -1.77E-03	ited vent stream) ited vent stream)
	$E_{TOC} = K_2 * (\sum)$ = 0.060 H _T = K ₁ * ($\sum)$ = 0.360 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma Case 4 = Therma a = b = c = d =	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 Q _s + c * H _T + d * E Case 1 32.3	heat recovery crubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 Eroc)/E _{HAP} Case 2 24.85	2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 41.6	(non-halogena (non-halogena (halogenated * 3.995 5.20E-02 -1.77E-03 9.70E-04	ited vent stream) ited vent stream)
	$E_{TOC} = K_2 * (\sum)$ = 0.060 H _T = K ₁ * ($\sum)$ = 0.360 40 CFR, Part 63, Su Case 1 = Flare Case 2 = Therma Case 3 = Therma Case 4 = Therma a = b = c = d =	069 kg/hr C _j * H _j) * (1 - B _{ws}) 024 MJ/m3 bpart G, Table 1) I Incinerator, 0% h I Incinerator, 70% I Incinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 Q _s + c * H _T + d * E Case 1 32.3	heat recovery crubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 Eroc)/E _{HAP} Case 2 24.85	2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 41.6 non-halogenat	(non-halogena (non-halogena (halogenated 1 Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 65.9	ited vent stream) ited vent stream)

By:		Date:		-	Project No		
Chkd. By:	147	Date:		-	Project	:	
Subject: <u>LE-3</u>	547						
Assumptions	1) V	Vater vapor	content, comp	ound concentrat	ion, net heat o	f combusion, tei	mperature, and
Variables				eam (% by volun nd j in vent strea			
	1			anic HAP (kg/hr)	,		
			-	nus methane ar		hr)	
				f compound j (ko		,	
			g value (MJ/cul		.a., g		
		-		, gen i in compour	nd į (g/g-mole)		
			-	jen i in compour		e)	
				ound j (g/g-mole		,	
			m temperature				
	Q _s =	Vent strear	m flow (dry stno	d cubic meter/m	on)		
Constants	K ₁	1 7/E-07	(g-mole/m3)(I	M l/kcal)/ppm	(from 40 CEE	Part 63 Subn	art G, Section 115)
Constants	K ₂		(kg-mole/m3)		-		art G, Section 115)
		MCB	Inerts (N2)	Chemical 3	Chemical 4		
nput data	B _{ws}	0					%
	Ci	2921					ppmv
	, Hj	711.2			1		kcal/mol
	$L_{j,i}$	1					halogen atom(s)
	$M_{j,i}$	35.45					g/g-mole
	Mj	112.56					g/g-mole
	Т	11					C
							acfm
	Qs	2.58					_
Mass emission rate	of halogen a	0.0741 toms	Σ(C _j * L _{j,i} * M _{j,i}) kg/hr		ed vent stream	based on Ehal	_
Mass emission rate	of halogen a E _{halogen} = = s E _{HAP} = =	0.0741 toms = K₂ * Q₅ *∑ 0.01911 = K₂ * (∑(C₁ * 0.06069	kg/hr ^r M _j)) * Q _s kg/hr		ed vent stream	based on Ehal	stnd m3/min (Group 2 CPV if <0.005 scm/min
	of halogen a E _{halogen} = = s E _{HAP} = =	0.0741 toms = K ₂ * Q _s *Σ 0.01911 = K ₂ * (Σ(C _j *	kg/hr f M _j)) * Q _s kg/hr f M _j)) * Q _s		ed vent stream	based on Ehal	stnd m3/min (Group 2 CPV if <0.005 scm/mir
Support calculation	of halogen a E _{halogen} = = s E _{HAP} = = E _{TOC} = = H _T = =	0.0741 toms $K_2 * Q_s * \sum_{0.01911} 0.000069$ $K_2 * (\Sigma(C_1 * 0.00069))$ $K_2 * (\Sigma(C_1 * 0.00069))$ $K_1 * (\Sigma C_1 * 0.00069)$	kg/hr ^A M _j)) * Q _s kg/hr ^A M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3		ed vent stream	based on Ehal	stnd m3/min (Group 2 CPV if <0.005 scm/mir
Support calculation	of halogen a E _{halogen} = = s E _{HAP} = = E _{TOC} = = H _T = = n 40 CFR, Par	0.0741 toms $K_2 * Q_s * \sum_{0.01911} 0.006069$ $K_2 * (\Sigma(C_1 * 0.06069))$ $K_2 * (\Sigma(C_1 * 0.06069))$ $K_1 * (\Sigma(C_1 * 0.36152))$	kg/hr f M _j)) * Q _s kg/hr f M _j)) * Q _s kg/hr H _j) * (1 - B _{ws})		ed vent stream		stnd m3/min (Group 2 CPV if <0.005 scm/mir
Support calculation	of halogen a E _{halogen} = = s E _{HAP} = = E _{TOC} = = H _T = = n 40 CFR, Par Case 1 =	0.0741 toms $K_2 * Q_s * \sum_{0.01911} 0.06069$ $K_2 * (\Sigma(C_1) * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06059)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$ $K_1 * (\Sigma C_1 * 0.06052)$ $K_2 * (\Sigma C_1 * 0.06052)$	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 irt G, Table 1)	(non-halogenat	ed vent stream	(non-halogena	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr)
Support calculation	of halogen a $E_{halogen} =$ = $B_{HAP} =$ = $E_{TOC} =$ = $H_T =$ = $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 =	0.0741 toms $K_2 * Q_s * \sum_{0.01911} 0.06069$ $K_2 * (\Sigma(C_1) * 0.06069)$ $K_2 * (\Sigma(C_1) * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_2 * 0.060152)$ $K_1 * (\Sigma C_3 * 0.060152)$ $K_2 * (\Sigma C_3 * 0.060152)$ $K_1 * (\Sigma C_3 * 0.060152)$ $K_2 * (\Sigma C_3 * 0.060152)$ $K_1 * (\Sigma C_3 * 0.060152)$ $K_2 * (\Sigma C_3 * 0.060152)$ $K_1 * (\Sigma C_3 * 0.060152)$ $K_2 * (\Sigma C_3 * 0.060152)$ $K_1 * (\Sigma C_3 * 0.060152)$ $K_2 * (\Sigma C_3 * 0.060152)$ $K_1 * (\Sigma C_3 * 0.060152)$ $K_2 * (\Sigma C_3 * 0.060152)$ $K_2 * (\Sigma C_3 * 0.060152)$ $K_1 * (\Sigma C_3 * 0.060152)$ $K_2 * (\Sigma C_3 * 0.060152)$ $K_3 * (\Sigma C_3 * 0.060152)$	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% f	(non-halogenat	ed vent stream	(non-halogena (non-halogena	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream)
Support calculation	of halogen a $E_{halogen} =$ = $B_{HAP} =$ $E_{TOC} =$ = $H_T =$ = $H_T =$ = $H_T =$ Case 1 = Case 2 = Case 3 =	0.0741 toms $K_2 * Q_s * \sum_{0.01911} (C_1 + C_2) = K_2 * (\Sigma(C_1 + C_2) + C_2) = K_2 * (\Sigma(C_1 + C_2) + C_2) = K_1 * (\Sigma(C_1 + C_2) = K_1 * (\Sigma(C_1 + C_2) + C_2) = K_1 * (\Sigma(C_1 + C_2) + (\Sigma(C_$	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% f	(non-halogenat neat recovery heat recovery	ed vent stream	(non-halogena (non-halogena	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation	of halogen a $E_{halogen} =$ = $B_{HAP} =$ $E_{TOC} =$ = $H_T =$ = $H_T =$ = $H_T =$ Case 1 = Case 2 = Case 3 =	0.0741 toms $K_2 * Q_s * \sum_{0.01911} (C_1 + C_2) = K_2 * (\Sigma(C_1 + C_2) + C_2) = K_2 * (\Sigma(C_1 + C_2) + C_2) = K_1 * (\Sigma(C_1 + C_2) = K_1 * (\Sigma(C_1 + C_2) + C_2) = K_1 * (\Sigma(C_1 + C_2) + (\Sigma(C_$	kg/hr $(M_j) * Q_s$ kg/hr $(M_j) * Q_s$ kg/hr $(H_j) * (1 - B_{ws})$ MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S	(non-halogenat heat recovery heat recovery Scrubber		(non-halogena (non-halogena (non-halogena (halogenated t	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation	of halogen a $E_{halogen} =$ = $B_{HAP} =$ $E_{TOC} =$ = $H_T =$ = $H_T =$ = $H_T =$ Case 1 = Case 2 = Case 3 =	$\begin{array}{c} 0.0741 \\ \hline \textbf{toms} \\ \texttt{K}_2 * (\texttt{Q}_s *\texttt{\Sigma}) \\ 0.01911 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.36152 \\ \texttt{rt} \ \texttt{63}, \texttt{Subpa} \\ \texttt{strate} \\ \texttt{stratee} \\ $	kg/hr $(M_j)) * Q_s$ kg/hr $(M_j) * Q_s$ kg/hr $H_j) * (1 - B_{ws})$ MJ/m3 art G, Table 1) cinerator, 0% f cinerator, 70% cinerator and S Case 1	(non-halogenat neat recovery heat recovery Scrubber Case 2	Case 3	(non-halogena (non-halogena (non-halogena (halogenated v Case 4	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ = $H_T =$ = $H_T =$ = m 40 CFR, Pau Case 1 = Case 1 = Case 3 = Case 4 =	$\begin{array}{c} 0.0741 \\ \hline \textbf{toms} \\ \texttt{K}_2 * Q_s * \Sigma \\ 0.01911 \\ \texttt{K}_2 * (\Sigma(C_1 * \\ 0.06069 \\ \texttt{K}_2 * (\Sigma(C_1 * \\ 0.06069 \\ \texttt{K}_2 * (\Sigma(C_1 * \\ 0.36152 \\ \texttt{rt} 63, \texttt{Subpa} \\ \texttt{e} \ \texttt{Flare} \\ \texttt{e} \ \texttt{Flare} \\ \texttt{e} \ \texttt{Thermal In} \\ \texttt{e} \ \texttt{flaremal In} \\ \texttt{flaremal In} $	kg/hr $(M_j) * Q_s$ kg/hr $(M_j) * Q_s$ kg/hr $(H_j) * (1 - B_{ws})$ MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S	(non-halogenat heat recovery heat recovery Scrubber		(non-halogena (non-halogena (non-halogena (halogenated t	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ = $H_T =$ = $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = a = b = c =	0.0741 toms $K_2 * Q_s * \sum_{0.01911}$ $K_2 * (\Sigma(C_1) * 0.06069$ $K_2 * (\Sigma(C_1 * 0.06069)$ $K_2 * (\Sigma(C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 *$	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation	of halogen a $E_{halogen} =$ = s $E_{HAP} =$ = $E_{TOC} =$ = $H_T =$ = $H_T =$ = $h_T =$ Case 1 = Case 2 = Case 3 = Case 4 = b =	0.0741 toms $K_2 * Q_s * \sum_{0.01911}$ $K_2 * (\Sigma(C_1) * 0.06069$ $K_2 * (\Sigma(C_1 * 0.06069)$ $K_2 * (\Sigma(C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 *$	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02	Case 3 2.519 1.18E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ = $H_T =$ = $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = a = b = c =	0.0741 toms $K_2 * Q_s * \sum_{0.01911}$ $K_2 * (\Sigma(C_1) * 0.06069$ $K_2 * (\Sigma(C_1 * 0.06069)$ $K_2 * (\Sigma(C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_1 * (\Sigma C_1 * 0.06069)$ $K_2 *$	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation Coefficients (fron	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = b = c = d =	$\begin{array}{c} 0.0741 \\ \textbf{toms} \\ \texttt{K}_2 * (\texttt{Q}_s *\texttt{\Sigma}) \\ 0.01911 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.36152 \\ \texttt{rt} \ \texttt{63}, \texttt{Subpa} \\ \texttt{strate} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{strate} \\ $	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03	Case 3 2.519 1.18E-02 1.30E-02	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation Coefficients (fron	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = b = c = d =	$\begin{array}{c} 0.0741 \\ \textbf{toms} \\ \texttt{K}_2 * (\texttt{Q}_s *\texttt{\Sigma}) \\ 0.01911 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.36152 \\ \texttt{rt} \ \texttt{63}, \texttt{Subpa} \\ \texttt{strate} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{strate} \\ $	kg/hr (M _j)) * Q _s kg/hr (M _j)) * Q _s kg/hr H _j) * (1 - B _{ws}) MJ/m3 art G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * E	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP}	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02	(non-halogena (non-halogena (nan-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation Coefficients (fron	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = b = c = d =	$\begin{array}{c} 0.0741 \\ \textbf{toms} \\ \texttt{K}_2 * (\texttt{Q}_s *\texttt{\Sigma}) \\ 0.01911 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.36152 \\ \texttt{rt} \ \texttt{63}, \texttt{Subpa} \\ \texttt{strate} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{strate} \\ $	kg/hr $(M_{j})) * Q_{s}$ kg/hr $(M_{j}) * Q_{s}$ kg/hr $H_{j}) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * B Case 1	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3	(non-halogena (non-halogena (nan-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation Coefficients (fron	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = b = c = d =	$\begin{array}{c} 0.0741 \\ \textbf{toms} \\ \texttt{K}_2 * (\texttt{Q}_s *\texttt{\Sigma}) \\ 0.01911 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.36152 \\ \texttt{rt} \ \texttt{63}, \texttt{Subpa} \\ \texttt{strate} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{strate} \\ $	kg/hr kg/hr $(M_{j})) * Q_s$ kg/hr $(M_{j}) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * B Case 1 32.3	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP}	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 41.6	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 65.9	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation Coefficients (fron	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = b = c = d =	$\begin{array}{c} 0.0741 \\ \textbf{toms} \\ \texttt{K}_2 * (\texttt{Q}_s *\texttt{\Sigma}) \\ 0.01911 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.36152 \\ \texttt{rt} \ \texttt{63}, \texttt{Subpa} \\ \texttt{strate} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{strate} \\ $	kg/hr kg/hr $(M_{j})) * Q_s$ kg/hr $(M_{j}) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * B Case 1 32.3	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 24.85 at TRE value for	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 41.6 non-halogenat	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 65.9	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation Coefficients (fron	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = b = c = d =	$\begin{array}{c} 0.0741 \\ \textbf{toms} \\ \texttt{K}_2 * (\texttt{Q}_s *\texttt{\Sigma}) \\ 0.01911 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.36152 \\ \texttt{rt} \ \texttt{63}, \texttt{Subpa} \\ \texttt{strate} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{strate} \\ $	kg/hr kg/hr $(M_{j})) * Q_s$ kg/hr $(M_{j}) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * B Case 1 32.3	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 24.85	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 41.6 non-halogenat	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 65.9	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream)
Support calculation Coefficients (fron	of halogen a $E_{halogen} =$ = $B_{halogen} =$ = $E_{TOC} =$ $H_T =$ = $H_T =$ = $H_T =$ = Case 1 = Case 2 = Case 3 = Case 4 = b = c = d =	$\begin{array}{c} 0.0741 \\ \textbf{toms} \\ \texttt{K}_2 * (\texttt{Q}_s *\texttt{\Sigma}) \\ 0.01911 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.06069 \\ \texttt{K}_2 * (\texttt{\Sigma}(\texttt{C}_1 * \\ 0.36152 \\ \texttt{rt} \ \texttt{63}, \texttt{Subpa} \\ \texttt{strate} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{Thermal In} \\ \texttt{strate} \\ $	kg/hr kg/hr $(M_{j})) * Q_s$ kg/hr $(M_{j}) * (1 - B_{ws})$ MJ/m3 wrt G, Table 1) cinerator, 0% H cinerator, 70% cinerator and S Case 1 1.935 3.66E-01 -7.69E-03 -7.33E-04 + c * H _T + d * B Case 1 32.3	(non-halogenat heat recovery heat recovery Scrubber Case 2 1.492 6.27E-02 3.18E-02 -1.16E-03 E _{TOC})/E _{HAP} Case 2 24.85 at TRE value for	Case 3 2.519 1.18E-02 1.30E-02 4.79E-02 Case 3 41.6 non-halogenat	(non-halogena (non-halogena (non-halogena (halogenated v Case 4 3.995 5.20E-02 -1.77E-03 9.70E-04 Case 4 65.9	stnd m3/min (Group 2 CPV if <0.005 scm/mir ogen <0.45 kg/hr) ated vent stream) ated vent stream) ated vent stream) ated vent stream)

By	Calculation No.	Date:	-		Sheet Project No.			
Chkd. By		Date: Date:			Project No. Project:			
	LE-488	Buto.			110,000			
-								
Assumptions	1)	Water vapor	content, comp	ound concentrat	ion, net heat of	combusion, ter	nperature, and	
Variables		B _{ws} = Water content of vent stream (% by volume)						
		C_j = Concentration of compound j in vent stream (ppmv)						
			-	anic HAP (kg/hr)				
				nus methane an		nr)		
	,			f compound j (ko	al/g-mole)			
			g value (MJ/cul					
				jen i in compour				
				en i in compoun)		
	-		n temperature	ound j (g/g-mole (F)	*)			
				d cubic meter/me	on)			
			()		,			
Constants	K ₁	1.74E-07	(g-mole/m3)(I	MJ/kcal)/ppm	(from 40 CFR	, Part 63, Subpa	art G, Section 115)	
	K ₂	2.49E-06	(kg-mole/m3)	(min/hr)/ppm	(from 40 CFR	, Part 63, Subpa	art G, Section 115)	
		MCB	Inerts (N2)	Chemical 3	Chemical 4	Chemical 5		
Input data	B _{ws}	0					%	
	Cj	6089					ppmv	
	Hj	711.2					kcal/mol	
	L _{j,i}	1					halogen atom(s)	
	M _{j,i}	35.45					g/g-mole	
	Mj	112.56					g/g-mole	
	T	10					C _	
	Qs	2.391					acfm	
		0.0689					stnd m3/min (Group 2 CPV if <0.005 scm/min)	
Mass emission	rate of halogen	atoms						
	-		∑(C _j * L _{j,i} * M _{j,i})					
	=	0.03705		(non-halogenate	ed vent stream	based on Ehald	ogen <0.45 kg/hr)	
Support calcul								
		$= K_2 * (\sum (C_j)^2)$						
	= 0.11764 kg/hr $E_{TOC} = K_2 * (\sum (C_i * M_{ji}) * Q_s)$							
	= 100	0.11764						
		0						
	Η _T	= K ₁ * (∑C _j *	H _j) * (1 - B _{ws})					
	=	0.75356						
Coefficients	(from 40 CFR, P	art 63, Subpa	art G, Table 1)					
	Case 1 = Flare					(non-halogena	ted vent stream)	
	Case 2 = Thermal Incinerator, 0% heat recovery				(non-halogenated vent stream)			
	Case 3 = Thermal Incinerator, 70% heat recovery						ted vent stream)	
	Case 4	= Thermal In	cinerator and S	Scrubber		(halogenated v	vent stream)	
			Case 1	Case 2	Case 3	Case 4		
	а	=	1.935	1.492	2.519	3.995		
	b		3.66E-01	6.27E-02	1.18E-02	5.20E-02		
	C		-7.69E-03	3.18E-02	1.30E-02	-1.77E-03		
	d	-	-7.33E-04	-1.16E-03	4.79E-02	9.70E-04		

TRE calculation

TRE = (a + b * Q_s + c * H_T + d * E_{TOC})/ E_{HAP}

Case 1	Case 2	Case 3	Case 4		
16.6	12.92	21.6	34.0		
Choose lowest TRE value for non-halogenated vent system					

Cal	culation No.	Sheet				
By:	Date:	Project No.				
Chkd. By:	Date:	Project:				
Subject: <u>LE-5</u>	180					
Assumptions	1) Water vapor content, compo	und concentration, net heat of combusion, temperature, and				
Assumptions	i) water vapor content, compou	ind concentration, her hear of combusion, temperature, and				
Variables	B _{ws} = Water content of vent stream (% by volume)					
	C _j = Concentration of compound j in vent stream (ppmv)					
	E _{HAP} = Emission rate of total organic HAP (kg/hr)					
	E _{TOC} = Emission rate of TOC (minus methane and ethane) (kg/hr)					
	H _j = Net heat of combustion of compound j (kcal/g-mole)					
	H_T = Net heating value (MJ/cubic meter)					
	L _{i.i} = Number of atoms of halogen i in compound j (g/g-mole)					
	M _{i,i} = Molecular weight of halogen i in compound j (kg/kg-mole)					
	Mj,i = Molecular weight of compound j (g/g-mole)					
	T = Vent stream temperature (F)					

2.49E-06 (kg-mole/m3)(min/hr)/ppm (from 40 CFR, Part 63, Subpart G, Section 115) K_2 Inerts (N2) Chemical 3 MCB Chemical 4 Chemical 5 Input data Bw 0 % С 8480 ppmv Н 711.2 kcal/mol L_i 1 halogen atom(s) M 35.45 g/g-mole Μ 112.56 g/g-mole ٦ 10 С 2.58 acfm Q 0.0744

(from 40 CFR, Part 63, Subpart G, Section 115)

Q_s = Vent stream flow (dry stnd cubic meter/mon)

1.74E-07 (g-mole/m3)(MJ/kcal)/ppm

stnd m3/min (Group 2 CPV if <0.005 scm/min)

Mass emission rate of halogen atoms

 $\begin{array}{l} \mathsf{E}_{\mathsf{halogen}} = \mathsf{K}_2 * \mathsf{Q}_s * \sum \sum (\mathsf{C}_j * \mathsf{L}_{j,i} * \mathsf{M}_{j,i}) \\ = & 0.05567 \text{ kg/hr} \end{array}$ (non-halogenated vent stream based on Ehalogen <0.45 kg/hr)

Support calculations

Constants

 $\begin{array}{l} \mathsf{E}_{\mathsf{HAP}} = \mathsf{K}_2 * (\sum (C_j * M_j)) * \mathsf{Q}_s \\ = & 0.17678 \; \mathsf{kg/hr} \\ \mathsf{E}_{\mathsf{TOC}} = \mathsf{K}_2 * (\sum (C_j * M_j)) * \mathsf{Q}_s \\ = & 0.17678 \; \mathsf{kg/hr} \end{array}$

$$H_{T} = K_{1} * (\sum C_{j} * H_{j}) * (1 - B_{ws})$$

= 1.04938 MJ/m3

Coefficients (from 40 CFR, Part 63, Subpart G, Table 1)

 K_1

Case 1 = Flare				(non-halogenated vent stream)
Case 2 = Thermal Inci	nerator, 0% he	eat recovery		(non-halogenated vent stream)
Case 3 = Thermal Inci	nerator, 70% l	neat recovery		(non-halogenated vent stream)
Case 4 = Thermal Inci	nerator and S	crubber		(halogenated vent stream)
	Case 1	Case 2	Coop 2	Cono A

	Case 1	Case 2	Case 3	Case 4
a =	1.935	1.492	2.519	3.995
b =	3.66E-01	6.27E-02	1.18E-02	5.20E-02
c =	-7.69E-03	3.18E-02	1.30E-02	-1.77E-03
d =	-7.33E-04	-1.16E-03	4.79E-02	9.70E-04

TRE calculation

TRE = (a + b * Q_s + c * H_T + d * E_{TOC})/ E_{HAP}

Case 1	Case 2	Case 3	Case 4
11.1	8.65	14.4	22.6
Choose lowest	TRE value for i	non-halogenate	d vent system

	VOC	E _{HAP}	Cj	
	[tpy]	[kg/hr]	ppmv	Notes
LE-114	0.957	0.099		<u>.</u>
LE-208	0.349	0.036	12780	
LE-210	0.01	0.001	6103	
LE-309	1.734	0.180	9199	
LE-330	0.336	0.035	8630	
LE-405	0.133	0.014	3122	
LE-430	0.26	0.027	25633	
LE-467	1.038	0.107	6474	
LD-435	1.19	0.123		Makeup water tank,TRE not required
LE-680	4.947	0.512	3752	
LT-750	0.006789	0.001		WHB TRE not required
LF-1601	5.527	0.572		WWEQ tank, no TRE required
LE-448	1.136	0.118	5057	
LE-477	1.09	0.113	6468	
LE-576	3.462	0.359	6431	
LE-679	3.343	0.346	5101	
LE-368	0.586	0.061	2911	(Previously known as LE-788)
LE-347	0.586	0.061	2921	New, same as LE-368
LE-488	1.136	0.118	6089	New, same as LE-448
LE-580	1.707	0.177	8480	New, same as LE-580

K₂ 2.49E-06 (kg-mole/m3)(min/hr (from 40 CFR, Part 63, Subpart G, Section 115)

C _{j =}	EHAP/K2*	QS*Mj

Appendix J Verian Process Flow Diagram⁷²

Appendix K Verian Emission Calculations⁷³

Solvay Augusta - PGA Project Emissions Summary

Uncontrolled Emissions Summary			
Pollutant	lbs/hr	tpy	
СО	3.76	16.46	
VOC	26.68	116.84	
PM	0.0032	0.0139	
PM10	0.0032	0.0139	
PM2.5	0.0032	0.0139	

Controlled Emissions Summary			
Pollutant	lbs/hr	tpy	
СО	3.76	16.46	
VOC	0.0534	0.2337	
PM	0.0032	0.0139	
PM10	0.0032	0.0139	
PM2.5	0.0032	0.0139	

PSD Summary Table					
	Emissions (tpy)				
Pollutant	Current PTE	Increase	PTE		
СО	89.60	16.46	<100		
VOC	<100	0.23	<100		
PM	79.50	0.01	79.51		
PM10	32.40	0.01	32.41		
PM2.5	32.40	0.01	32.41		

Site-wide limits of <100 tpy requested for CO; VOC limit already in place.

Solvay Augusta - PGA CO Emissions

		Divided by 3 since only one line
		-
CO (lbs/hr)	3.76	
CO (short tons per year)	16.46	

Solvay Augusta - PGA VOC Emissions

VOC Emissions	
lbs/hr (uncontrolled)	26.68
tpy (uncontrolled)	116.84
% Control Effciency (scrubber)	99.8%
lbs/hr (controlled)	0.053
tpy (controlled)	0.234

¹Based on 10,000 mT production rate and 8760 hr/yr operation.

Solvay Augusta - PGA PM Emissions

Maximum	mT/yr	
Process Rate	tons/hr	
Batch Size	lbs/batch	
Batch Time	hrs/batch	

		Emissions		
Emission Source	Pollutant	Emission Factor ¹ (lbs PM/ton)	lbs/hr	tpy
	PM	0.0036	0.002	0.007
JME-302	PM_{10}^{2}	NA	0.002	0.007
1 Dellet	PM_{2}^{2}	NA	0.002	0.007

1Pellet transfer to storage, with wet scrubber. AP-42, Table 11.23-

 $^2\mathrm{No}$ factors available for PM $_{10}$ and PM $_{2.5}$ so assume PM = PM $_{10}$ = PM $_{2.5}$

	Emissions per Daten			
	Emission Factor ¹ (lbs PlvUton)	lbs/batch	tons/batch	
PM	0.0036	0.014	7.20E-06	
PM10 ²	ND	0.014	7.20E-06	
PM_{2} , ²	ND	0.014	7.20E-06	

Emissions per Batch

Pellet transfer to storage, with wet scrubber. AP-42, Table 11.23-

 $^2\!\mathrm{No}$ factors available for PM $_{10}\,\mathrm{and}\,\,\mathrm{PM}_{2.5}$ so assume PM= PM $_{10}\,\mathrm{=}\,\mathrm{PM}_{2.5}$

	Emissions per Batch			
	Emission Factor ¹ (Ibs PlvUton)	lbs/batch	tons/batch	
РМ	0.0036	0.030	1.5 IE-05	
PM_10^2	ND	0.030	1.5 IE-05	
PM_{7}^{2}	ND	0.030	1.5 IE-05	

IPellet transfer to storage, with wet scrubber. AP-42, Table 11.23-

 2No factors available for PM $_{10}\,and$ PM $_{2.5}$ so assume PM = PM $_{10}\,$ PM $_{2.5}$

kta	1	kilotons per annum	
l kt	$\sim - 1$	2000000	lbs
1 kt	=	1000	ton

		Emission Factor ³	PM/PM10/PM	12.5 Emissions
Emission Source	CFM	gr/cf	lb/hr	tpy
JME-306	11.27	0.01	0.0010	0.0042
JH-306	7.12	0.01	0.0006	0.0027
H-402A/B, JD-402	1.00	0.01	0.0001	0.0004

³Air Pollution Control Technology Fact Sheet: EPA-452/F-03-025

	Total PM Emissions				
Pollutant	lb/hr	tpy			
PM	0.0032	0.0139			
PM_{10}	0.0032	0.0139			
PM _{2.5}	0.0032	0.0139			

Xydar Emissions

tpy @

lb/yr 20000000 0.188 lb/hr for one line 0.38 lb/hr 1.65 tpy

ΡM 1.69 Xydar is only a source of VOC. The permitted PTE factor is Two lines could operate, thus emissions =

Solvay Augusta Facility-Xydar Combustion Sources Boiler and Hot Oil Heaters

Hot Oil Heater#1	13 MMBtu/hr
Hot Oil Heater#2	13 MMBtu/hr

Hot Oil Heater#1 NG Usage

Hot Oil Heater	13,000,000	Btu/hr
	1021	Btu/scf
	12733	scf/hr

Pollutant	Emission Factor* (lb/10^6 scf)	Emission Ib/hr	Emission tpy
CO ₂	120,000	3055.83	13384.525
CH ₄	2	0.06	0.257
N ₂ O (Uncontrolled)	2.2	0.06	0.245
N ₂ O(Controlled low-NOx Burner)	0.64	0.02	0.071
PM (total)	7.6	0.19	0.848
PM(condensible)	7.6	0.19	0.848
PM (filterable)	7.6	0.19	0.848
SO ₂	0.6	0.02	0.067
TOC	11	0.28	1.227
Methane	2.3	0.06	0.257
VOC	5.5	0.14	0.613
NO _X (Small Boiler-Uncontrolled)	100	2.55	11.15
СО	84	2.14	9.369

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

Hot Oil Heater#2 NG Usage

Hot Oil Heater

13,000,000	Btu/hr	1	
	Btu/scf		
12733	scf/hr		
Pollutant	Emission Factor* (lb/10^6 scf)	Emission Ib/hr	Emission tpy
CO ₂	120,000	3055.83	13384.525
CO ₂ (from Uncontrolled VOC emissions)	2	0.05	0.223
CO _{2 (from Controlled VOC emissions)}	2.2	0.06	0.245
CH ₄	2	0.06	0.257
Lead	0.0005	0.00	0.000
N ₂ O (Uncontrolled)	2.2	0.06	0.245
N ₂ O(Controlled low-NOx Burner)	0.64	0.02	0.071
PM (total)	7.6	0.19	0.848
PM(condensible)	7.6	0.19	0.848
PM (filterable)	7.6	0.19	0.848
SO ₂	0.6	0.02	0.067
тос	11	0.28	1.227
Methane	2.3	0.06	0.257
VOC	5.5	0.14	0.613
NO _X (Small Boiler-Uncontrolled)	100	2.55	11.15
со	84	2.14	9.369

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

	PM	PM10	PM2.5	SO2	CO	NOX	VOC
Hot Oil Heater#1	0.19	0.19	0.19	0.015	2.139	2.55	0.140
Hot Oil Heater#2	0.19	0.19	0.19	0.015	2.139	2.55	0.140
Total	0.39	0.39	0.39	0.03	4.28	5.09	0.28

Emissions (tpy)

	PM	PM10	PM2.5	SO2	CO	NOX	VOC
Hot Oil Heater#1	0.85	0.85	0.85	0.07	9.37	11.15	0.61
Hot Oil Heater#2	0.85	0.85	0.85	0.07	9.37	11.15	0.61
Total	1.70	1.70	1.70	0.13	18.74	22.31	1.23

Appendix L PUSH Process Flow Diagram⁷⁴

Appendix M PUSH Emission Calculations⁷⁵

CRITERIA POLLUTANT	Uncontrolled (lb/hr)	Uncontrolled (tpy)	Controlled (lb/hr)	Controlled (tpy)
Carbon Monoxide (CO)	0	0	0	0
Nitrogen Oxides (NOx)	0	0	0	0
Particulate Matter (PM) (filterable only)	6.70	29.34	6.73E-02	0.29
PM <10 microns (PM ₁₀)	6.70	29	6.73E-02	0.29
PM <2.5 microns (PM _{2.5})	6.70	29	6.73E-02	0.29
Sulfur Dioxide (SO ₂)	0	0	0	0
Volatile Organic Compounds (VOC) ¹	176.1	771.5	2.43	10.7
HCI	2.70	11.8	0.027	0.118
Ni Compound	0.42	1.84	0.004	0.018
Benzene	0.236	1.03	0.002	0.010
Chlorobenzene (MCB)	1.57E-02	6.86E-02	1.57E-04	6.86E-04
Methanol	119.8	524.8	1.71	7.48
Total Hazardous Air Pollutants (HAPs)	123.2	539.5	1.74	7.63

¹Includes ethanol emissions

"The data being shipped herewith may be controlled for export by the United States Government. You shall be aware and adhere to the applicable export regulations and laws. Export or re-export of this data to any other foreign person or destination, including re-importing this data into the United States, may require a license issued by applicable regulatory agencies and/or local export control authorities. You shall not export or re-export any data to any proscribed country listed in the U.S. Export Administration Regulations unless properly authorized by the U.S. Government."

НАР	Uncontrolled (lb/hr)	Uncontrolled (tpy)	Controlled (lb/hr)	Controlled (tpy)
HCI	2.700	11.826	0.027	0.118
Ni Compound	0.420	1.840	0.004	0.018
Benzene	0.236	1.034	0.002	0.010
Chlorobenzene (MCB)	1.57E-02	6.86E-02	1.57E-04	6.86E-04
Methanol	119.81	524.77	1.71	7.48
Total Hazardous Air Pollutants (HAPs)	123.2	539.5	1.74	7.63

"The data being shipped herewith may be controlled for export by the United States Government. You shall be aware and adhere to the applicable export regulations and laws. Export or re-export of this data to any other foreign person or destination, including re-importing this data into the United States, may require a license issued by applicable regulatory agencies and/or local export control authorities. You shall not export or re-export any data to any proscribed country listed in the U.S. Export Administration Regulations unless properly authorized by the U.S. Government."

Solvay- PUSH Uncontrolled Emissions

	Pollutant (Ibs/hr)							
Stack ID	voc	РМ	NICI2-TPP (HAP)	HCI (HAP)	Benzene (HAP)	MCB (HAP)	Sulfuric Acid (TAP)	Methanol (HAP)
FS1	6.00E-04	0	0	0	0	0		0
FS2	1.32E+01	0	0	0	0	0		0
FS6	4.20E+01	0	0	2.7	0.233	1.56E-02		5.1
FS7	0	0	0	0	0	0		0
FS8	1.20E+02	0	0	0	0	0	9.47E-16	114.3
FS9	4.85E-01	0	0	0	0.003	5.20E-05		0.4
FH1	0	1.76E+00	0	0	0	0		0
FH2	0	3.00E-03	0	0	0	0		0
FH3	0	1.65E+00	0	0	0	0		0
FH4	0	1.28E+00	0	0	0	0		0
FH5	0	1.70E+00	0.42	0	0	0		0
FH6	0	2.70E-01	0	0	0	0		0
FH7	6.25E-02	1.80E-02	0	0	0	0		0
FH8	6.25E-02	1.80E-02	0	0	0	0		0
Total (lbs/hr)	176.14	6.70	0.42	2.70	0.236	1.57E-02	9.47E-16	119.81

	Pollutant (tpy)									
Stack ID	VOC	РМ	NICI2-TPP (PM.HAP)	HCI (HAP)	Benzene (HAP)	MCB (HAP)	Sulfuric Acid (TAP)	Methano (HAP)		
FS1	0.003	0	0	0	0	0		0		
FS2	57.835	0	0	0	0	0		0		
FS6	183.998	0	0	11.826	1.021	0.068		22.3		
FS7	0	0	0	0	0	0		0		
FS8	526.997	0	0	0	0	0	4.15E-15	500.8		
FS9	2.123	0	0	0	0.013	2.28E-04		1.666		
FH1	0	7.709	0	0	0	0		0		
FH2	0	0.013	0	0	0	0		0		
FH3	0	7.227	0	0	0	0		0		
FH4	0	5.606	0	0	0	0		0		
FH5	0	7.446	1.840	0	0	0		0		
FH6	0	1.183	0	0	0	0		0		
FH7	0.274	0.079	0	0	0	0		0		
FH8	0.274	0.079	0	0	0	0		0		
Total (tpy)	771.5	29.3	1.84	11.8	1.03	6.86E-02	4.15E-15	524.8		

"The data being shipped herewith may be controlled for export by the United States Government. You shall be aware and adhere to the applicable export regulations and laws. Export or re-export of this data to any other foreign person or destination, including re-importing this data into the United States, may require a license issued by applicable regulatory agencies and/or local export control authorities. You shall not export or re-export any data to any proscribed country listed in the U.S. Export Administration Regulations unless properly authorized by the U.S. Government."

Solvay- PUSH Controlled Annual Emission

		Pollutant (lbs/hr)							
Stack ID	voc	РМ	NICI2-TPP (HAP)	HCI (HAP)	Benzene (HAP)	MCB (HAP)	Methanol (HAP)		
FS1	4.11E-05	0	0	0	0	0	0		
FS2	1.10E-01	0	0	0	0	0	0		
FS6	4.20E-01	0	0	2.70E-02	2.33E-03	1.56E-04	5.10E-02		
FS7	0	0	0	0	0	0	0		
FS8	1.77E+00	0	0	0	0	0	1.65		
FS9	5.75E-03	0	0	0	3.00E-05	5.20E-07	3.80E-03		
FH1	0	1.76E-02	0	0	0	0	0		
FH2	0	3.00E-04	0	0	0	0	0		
FH3	0	1.65E-02	0	0	0	0	0		
FH4	0	1.28E-02	0	0	0	0	0		
FH5	0	1.70E-02	0.004	0	0	0	0		
FH6	0	2.70E-03	0	0	0	0	0		
FH7	6.25E-02	1.80E-04	0	0	0	0	0		
FH8	6.25E-02	1.80E-04	0	0	0	0	0		
Total (lbs/hr)	2.43	6.73E-02	0.004	0.027	0.002	1.57E-04	1.71		

			Polluta	nt (tpy)			
Stack ID	voc	РМ	NiCl2-TPP (HAP)	HCI (HAP)	Benzene (HAP)	MCB (HAP)	Methanol (HAP)
FS1	1.80E-04	0	0	0	0	0	0
FS2	4.82E-01	0	0	0	0	0	0
FS6	1.84E+00	0	0	1.18E-01	1.02E-02	6.83E-04	2.23E-01
FS7	0	0	0	0	0	0	0
FS8	7.76E+00	0	0	0	0	0	7.24
FS9	2.52E-02	0	0	0	1.31E-04	2.28E-06	1.67E-02
FH1	0	7.71E-02	0	0	0	0	0
FH2	0	1.31E-03	0	0	0	0	0
FH3	0	7.23E-02	0	0	0	0	0
FH4	0	5.61E-02	0	0	0	0	0
FH5	0	7.45E-02	1.84E-02	0	0	0	0
FH6	0	1.18E-02	0	0	0	0	0
FH7	2.74E-01	7.88E-04	0	0	0	0	0
FH8	2.74E-01	7.88E-04	0	0	0	0	0
Total (tpy)	10.7	0.29	0.018	0.118	0.010	6.86E-04	7.48

"The data being shipped herewith may be controlled for export by the United States Government. You shall be aware and adhere to the applicable export regulations and laws. Export or re-export of this data to any other foreign person or destination, including re-importing this data into the United States, may require a license issued by applicable regulatory agencies and/or local export ontrol authorities. You shall not export or re-export any data to any proscribed country listed in the U.S. Export Administration Regulations unless properly authorized by the U.S. Government."

Appendix N Project Sarsaparilla Process Flow Diagrams⁷⁶

Appendix O Project Sarsaparilla Emission Calculations⁷⁷

Sarsaparilla

Emission Factors (Ib/MMSCF)

LIIII3SIUITT		/invisci j							
	PM	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD
	7.6	7.6	7.6	0.6	40	32	5.5		0.0005
Furnaces:									
Boiler:									
Emissions	lb/hr								
	PM	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD
Process	3.89	3.89	3.89	2.22	0.74	1.92	6.29		
Furnaces	0.17	0.17	0.17	0.01	0.90	0.72	0.12	0.00	0.00
Boiler	1.42	1.42	1.42	50.46	3.55	14.21	0.54	0.00	0.00
Total	5.48	5.48	5.48	52.69	5.19	16.86	6.95	0.00	0.00
Emissions	(tpy)								
	РМ	PM10	PM2.5	SO2	СО	NOX	VOC	SAM	LEAD
Process	17.02	17.02	17.02	9.72	3.24	8.42	33.08	0.00	0.00
Furnaces	0.75	0.75	0.75	0.06	3.94	3.15	0.54	0.00	0.00
Boiler	3.76	3.76	3.76	18.42	4.29	19.87	2.40	0.00	0.00
Total	24.00	24.00	24.00	230.79	22.75	73.83	30.46	0.00	0.00

Sarsaparilla Process Emissions

			Emissions		
Pollutant	EU	limit	lb/yr	tpy	
PM	5	[mg/Nm3]	323.9	0.16	
ТVОС	20	[mg/Nm3]	1295.7	0.65	
NOx	130	[mg/Nm3]	8422.1	4.21	
СО	50	[mg/Nm3]	3239.3	1.62	
CH4	50	[mg/Nm3]	3239.3	1.62	
HCI	10.0	[mg/Nm3]	647.9	0.32	
HF	1.0	[mg/Nm3]	64.8	0.03	
SO2	150	[mg/Nm3]	9717.9	4.86	
Dioxins	0.05	[ng-TEQ/Nm3]	3.24E-06	0.00	
Cl2	2.0	[mg/Nm3]	129.6	0.06	
F2	1.0	[mg/Nm3]	64.8	0.03	

Source	Pollutant	Waste Gas Flowrate [Nm3/h]	Concentration [mg/Nm3]	Pollutant lb/hr	Pollutant Ib/yr	Pollutant tpy
Slurry Washing Waste Gas	PM	6264	0	0.00	0.00	0.00
	X4	6264	2	0.03	241.95	0.12
	COMO3	6264	2	0.03	241.95	0.12
	VOC	6264	47.1	0.65	5 <i>,</i> 697.85	2.85
Drying Waste Gas	PM	64380	20	2.84	24,866.79	12.43
	X4	64380	35	4.97	43,516.88	21.76
	COMO3	64380	5	0.71	6,216.70	3.11
	VOC	64380	27.6	3.92	34,316.17	17.16
Powder Storage (Silo) vents	PM	9452	20	0.42	3,650.84	1.83
Packaging Silo Vents	PM	3105	20	0.14	1,199.31	0.60
Process suction vent	PM	685	20	0.03	264.58	0.13
Packaging Dedusting vent	PM	7215	20	0.32	2,786.80	1.39
SA Charging Vent	PM	1200	5	0.01	115.88	0.06
Vacuum cleaning vent	PM	1324	20	0.06	511.40	0.26
Scrubber waste gas	COMO3	1200	20	0.05	463.50	0.23
	COMO6	1200	20	0.05	463.50	0.23
	VOC	1200	30.4	0.08	704.52	0.35
Fugitive Emissions	VOC	N/A	N/A	1.35	11,826.00	5.91

Furnace Emissions from Combustion of Natural Gas Only (indirect fired units):

Emission Factors (Ib/MMSCF)					
	PM/PM10/	SO2	СО	NOX	VOC
	7.6	0.6	40	32	5.5
Furnaces:	375	scfm ng			
Emissions lb/hr	· · · · · · · · · · · · · · · · · · ·		I		
	PM/PM10/	SO2	CO	NOX	VOC
Furnaces	0.17	0.01	0.90	0.72	0.12

Total Fugitive Emissions

Pollutant	Potential Fugitive Emissions					
	lb/hr	tpy				
VOC	1.35	5.93				
COMO3	0.34	1.47				
Х4	0.08	0.33				
HCI	0.20	0.86				
Ethylene Glycol	0.14	0.62				
Total HAPs	0.75	3.28				

VOC Fugitive Emissions

Emission Unit ID	
Stack ID	N/A
Emission Unit Description	Fugitive Emissions
Control Device IDs	N/A
Control Device Description	N/A

Percent of Equipment Assumed Leaking Leaking Equipment Screening Value 2% 2000 ppm

Equipment Type ⁽¹⁾	Total Equi	pment Count	Leaking Equipment Count ⁽²⁾	
Equipment Type	Gas	Light Liquid	Gas	Light Liquid
Compressors	2	2	1	1
Connectors	3,240	3,240	65	65
Open-ended Lines	152	152	4	4
Pumps	-	-	-	-
Valves	1,998	1,998	40	40
Sampling connections	22	22	1	1
Pressure relief valves	25	25	1	1

Equipment Type	Non-Leaking EF (kg	g/hr/component) ⁽³⁾	Leaking EF (kg/hr/component) ⁽⁴⁾		
Equipment Type	Gas	Light Liquid	Gas	Light Liquid	
Compressors	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Connectors	6.10E-07	6.10E-07	2.55E-03	2.55E-03	
Open-ended Lines	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Pumps		7.50E-06		9.97E-03	
Valves	6.60E-07	4.90E-07	1.42E-03	2.74E-03	
Sampling connections	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Pressure relief valves	6.10E-07	6.10E-07	3.90E-03	3.90E-03	

Non-Leaking Equipment Emissions								
Fauinment Tune	PTE	(lb/hr)	PTE (tpy)					
Equipment Type	Gas	Light Liquid	Gas	Light Liquid				
Compressors	8.27E-06	8.27E-06	3.62E-05	3.62E-05				
Connectors	4.27E-03	4.27E-03	1.87E-02	1.87E-02				
Open-ended Lines	2.44E-03	2.44E-03	1.07E-02	1.07E-02				
Pumps	-	-	-	-				
Valves	2.85E-03	2.12E-03	1.25E-02	9.27E-03				
Sampling connections	3.47E-04	3.47E-04	1.52E-03	1.52E-03				
Pressure relief valves	3.16E-05	3.16E-05	1.38E-04	1.38E-04				
Total PTE	0.02		0.08					

Leaking Equipment Emissions							
Equipment Turpe	PTE (lb/hr)			(tpy)			
Equipment Type	Gas	Light Liquid	Gas	Light Liquid			
Compressors	2.20E-02	2.20E-02	9.63E-02	9.63E-02			
Connectors	3.65E-01	3.65E-01	1.60E+00	1.60E+00			
Open-ended Lines	8.80E-02	8.80E-02	3.85E-01	3.85E-01			
Pumps	-	-	-	-			
Valves	1.26E-01	2.42E-01	5.50E-01	1.06E+00			
Sampling connections	2.20E-02	2.20E-02	9.63E-02	9.63E-02			
Pressure relief valves	8.60E-03	8.60E-03	3.77E-02	3.77E-02			
Total PTE	1.	.33	5.84				

Notes:

1. All agitators are assumed seal-less.

2. Assume 2% of equipment leaking.

3. Emissions Factors from Table 2-11, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.

4. Emissions Factors from Table 2-9, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.

COMO3 Fugitive Emissions

Emission Unit ID	
Stack ID	N/A
Emission Unit Description	Fugitive Emissions
Control Device IDs	N/A
Control Device Description	N/A

Percent of Equipment Assumed Leaking Leaking Equipment Screening Value 2% 2000 ppm

Equipment Type ⁽¹⁾	Total Equipment Count		Leaking Equipment Count ⁽²⁾	
Equipment Type	Gas	Light Liquid	Gas	Light Liquid
Compressors	-	-	-	-
Connectors	660	660	14	14
Open-ended Lines	31	31	1	1
Pumps	-	-	-	-
Valves	407	407	9	9
Sampling connections	5	5	1	1
Pressure relief valves	5	5	1	1

Equipment Type	Non-Leaking EF (kg/hr/component) ⁽³⁾		Leaking EF (kg/hr/component) ⁽⁴⁾	
	Gas	Light Liquid	Gas	Light Liquid
Compressors	7.50E-06	7.50E-06	9.97E-03	9.97E-03
Connectors	6.10E-07	6.10E-07	2.55E-03	2.55E-03
Open-ended Lines	7.50E-06	7.50E-06	9.97E-03	9.97E-03
Pumps		7.50E-06		9.97E-03
Valves	6.60E-07	4.90E-07	1.42E-03	2.74E-03
Sampling connections	7.50E-06	7.50E-06	9.97E-03	9.97E-03
Pressure relief valves	6.10E-07	6.10E-07	9.54E-04	9.54E-04

Non-Leaking Equipment Emissions					
Faultament Ture	PTE (lb/hr)		PTE (tpy)		
Equipment Type	Gas	Light Liquid	Gas	Light Liquid	
Compressors	-	-	-	-	
Connectors	8.69E-04	8.69E-04	3.81E-03	3.81E-03	
Open-ended Lines	4.96E-04	4.96E-04	2.17E-03	2.17E-03	
Pumps	-	-	-	-	
Valves	5.79E-04	4.30E-04	2.54E-03	1.88E-03	
Sampling connections	5.79E-05	5.79E-05	2.54E-04	2.54E-04	
Pressure relief valves	5.38E-06	5.38E-06	2.36E-05	2.36E-05	
Total PTE	PTE 3.87E-03 0.02			02	

Leaking Equipment Emissions					
Equipment Type	PTE (lb/hr)		PTE (tpy)		
Equipment Type	Gas	Light Liquid	Gas	Light Liquid	
Compressors	-	-	-	-	
Connectors	7.86E-02	7.86E-02	3.44E-01	3.44E-01	
Open-ended Lines	2.20E-02	2.20E-02	9.63E-02	9.63E-02	
Pumps	-	-	-	-	
Valves	2.83E-02	5.44E-02	1.24E-01	2.38E-01	
Sampling connections	2.20E-02	2.20E-02	9.63E-02	9.63E-02	
Pressure relief valves	2.10E-03	2.10E-03	9.21E-03	9.21E-03	
Total PTE	0	.33	1	.45	

Notes:

1. All agitators are assumed seal-less.

2. Assume 2% of equipment leaking.

- 3. Emissions Factors from Table 2-11, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.
- 4. Emissions Factors from Table 2-9, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.

X4 Fugitive Emissions

Emission Unit ID	
Stack ID	N/A
Emission Unit Description	Fugitive Emissions
Control Device IDs	N/A
Control Device Description	N/A

Percent of Equipment Assumed Leaking Leaking Equipment Screening Value 2% 2000 ppm

Equipment Type ⁽¹⁾	Total Equipment Count		Leaking Equipment Count ⁽²⁾	
	Gas	Light Liquid	Gas	Light Liquid
Compressors	-	-	-	-
Connectors	60	60	2	2
Open-ended Lines	3	3	1	1
Pumps	-	-	-	-
Valves	37	37	1	1
Sampling connections	1	1	-	-
Pressure relief valves	1	1	-	-

Equipment Type	Non-Leaking EF (kg/hr/component) ⁽³⁾		Leaking EF (kg/hr/component) ⁽⁴⁾	
	Gas	Light Liquid	Gas	Light Liquid
Compressors	7.50E-06	7.50E-06	9.97E-03	9.97E-03
Connectors	6.10E-07	6.10E-07	2.55E-03	2.55E-03
Open-ended Lines	7.50E-06	7.50E-06	9.97E-03	9.97E-03
Pumps		7.50E-06		9.97E-03
Valves	6.60E-07	4.90E-07	1.42E-03	2.74E-03
Sampling connections	7.50E-06	7.50E-06	9.97E-03	9.97E-03
Pressure relief valves	6.10E-07	6.10E-07	1.14E-04	1.14E-04

Non-Leaking Equipment Emissions					
Faultament Ture	PTE (lb/hr)		PTE (tpy)		
Equipment Type	Gas	Light Liquid	Gas	Light Liquid	
Compressors	-	-	-	-	
Connectors	7.80E-05	7.80E-05	3.42E-04	3.42E-04	
Open-ended Lines	3.31E-05	3.31E-05	1.45E-04	1.45E-04	
Pumps	-	-	-	-	
Valves	5.24E-05	3.89E-05	2.29E-04	1.70E-04	
Sampling connections	8.27E-06	8.27E-06	3.62E-05	3.62E-05	
Pressure relief valves	6.73E-07	6.73E-07	2.95E-06	2.95E-06	
Total PTE	Total PTE 3.31E-04 1.45E-03				

Leaking Equipment Emissions					
Equipment Type	PTE (lb/hr)		PTE (tpy)		
Equipment Type	Gas Light Liquid		Gas	Light Liquid	
Compressors	-	-	-	-	
Connectors	1.12E-02	1.12E-02	4.92E-02	4.92E-02	
Open-ended Lines	2.20E-02	2.20E-02	9.63E-02	9.63E-02	
Pumps	-	-	-	-	
Valves	3.14E-03	6.04E-03	1.38E-02	2.65E-02	
Sampling connections	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Pressure relief valves	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Total PTE	0	.08	0.	33	

Notes:

1. All agitators are assumed seal-less.

2. Assume 2% of equipment leaking.

3. Emissions Factors from Table 2-11, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.

4. Emissions Factors from Table 2-9, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.

HCl Fugitive Emissions

Emission Unit ID	
Stack ID	N/A
Emission Unit Description	Fugitive Emissions
Control Device IDs	N/A
Control Device Description	N/A

Percent of Equipment Assumed Leaking Leaking Equipment Screening Value 2% 2000 ppm

Equipment Type ⁽¹⁾	Total Equipment Count		Leaking Equipment Count ⁽²⁾	
	Gas	Light Liquid	Gas	Light Liquid
Compressors	-	-	-	-
Connectors	300	300	6	6
Open-ended Lines	14	14	1	1
Pumps	-	-	-	-
Valves	185	185	4	4
Sampling connections	2	2	1	1
Pressure relief valves	3	3	1	1

Equipment Type	Non-Leaking EF (kg	g/hr/component) ⁽³⁾	Leaking EF (kg/hr/component) ⁽⁴⁾		
Equipment Type	Gas	Light Liquid	Gas	Light Liquid	
Compressors	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Connectors	6.10E-07	6.10E-07	2.55E-03	2.55E-03	
Open-ended Lines	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Pumps		7.50E-06		9.97E-03	
Valves	6.60E-07	4.90E-07	1.42E-03	2.74E-03	
Sampling connections	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Pressure relief valves	6.10E-07	6.10E-07	4.75E-04	4.75E-04	

Non-Leaking Equipment Emissions							
Equipment Type	PTE	(lb/hr)	PTE	(tpy)			
Equipment Type	Gas	Light Liquid	Gas	Light Liquid			
Compressors	-	-	-	-			
Connectors	3.95E-04	3.95E-04	1.73E-03	1.73E-03			
Open-ended Lines	2.15E-04	2.15E-04	9.42E-04	9.42E-04			
Pumps	-	-	-	-			
Valves	2.63E-04	1.96E-04	1.15E-03	8.57E-04			
Sampling connections	1.65E-05	1.65E-05	7.24E-05	7.24E-05			
Pressure relief valves	2.02E-06 2.02E-06		8.84E-06 8.84E-06				
Total PTE	1.7	2E-03	7.52	2E-03			

Leaking Equipment Emissions							
Equipment Type	PTE	(lb/hr)	PTE	(tpy)			
Equipment Type	Gas	Light Liquid	Gas	Light Liquid			
Compressors	-	-	-				
Connectors	3.37E-02	3.37E-02	1.47E-01	1.47E-01			
Open-ended Lines	2.20E-02	2.20E-02	9.63E-02	9.63E-02			
Pumps	-	-	-				
Valves	1.26E-02	2.42E-02	5.50E-02	1.06E-01			
Sampling connections	2.20E-02	2.20E-02	9.63E-02	9.63E-02			
Pressure relief valves	1.05E-03	1.05E-03	4.59E-03	4.59E-03			
Total PTE	0	.19	0	.85			

Notes:

1. All agitators are assumed seal-less.

2. Assume 2% of equipment leaking.

- 3. Emissions Factors from Table 2-11, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.
- 4. Emissions Factors from Table 2-9, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.

Ethylene Glycol Fugitive Emissions

Emission Unit ID	
Stack ID	N/A
Emission Unit Description	Fugitive Emissions
Control Device IDs	N/A
Control Device Description	N/A

Percent of Equipment Assumed Leaking Leaking Equipment Screening Value 2% 2000 ppm

Equipment Type ⁽¹⁾	Total Equip	ment Count	Leaking Equipment Count ⁽²⁾		
Equipment Type	Gas	Light Liquid	Gas	Light Liquid	
Compressors	-	-	-	-	
Connectors	120	120	3	3	
Open-ended Lines	6	6	1	1	
Pumps	-	-	-	-	
Valves	74	74	2	2	
Sampling connections	1	1	1	1	
Pressure relief valves	1	1	1	1	

Equipment Type	Non-Leaking EF (kg	g/hr/component) ⁽³⁾	Leaking EF (kg/hr/component) ⁽⁴⁾		
Equipment Type	Gas	Light Liquid	Gas	Light Liquid	
Compressors	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Connectors	6.10E-07	6.10E-07	2.55E-03	2.55E-03	
Open-ended Lines	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Pumps		7.50E-06		9.97E-03	
Valves	6.60E-07	4.90E-07	1.42E-03	2.74E-03	
Sampling connections	7.50E-06	7.50E-06	9.97E-03	9.97E-03	
Pressure relief valves	6.10E-07	6.10E-07	2.11E-04	2.11E-04	

Non-Leaking Equipment Emissions							
Equipment Type	PTE	(lb/hr)	PTE	(tpy)			
Equipment Type	Gas	Light Liquid	Gas	Light Liquid			
Compressors	-	-	-	-			
Connectors	1.57E-04	1.57E-04	6.89E-04	6.89E-04			
Open-ended Lines	8.27E-05	8.27E-05	3.62E-04	3.62E-04			
Pumps	-	-	-	-			
Valves	1.05E-04	7.78E-05	4.59E-04	3.41E-04			
Sampling connections	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Pressure relief valves	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Total PTE	6.63	3E-04	2.90	E-03			

Leaking Equipment Emissions							
Faultament Tune	PTE	(lb/hr)	PTE	(tpy)			
Equipment Type	Gas	Light Liquid	Gas	Light Liquid			
Compressors	-	-	-				
Connectors	1.68E-02	1.68E-02	7.37E-02	7.37E-02			
Open-ended Lines	2.20E-02	2.20E-02	9.63E-02	9.63E-02			
Pumps	-	-	-				
Valves	6.28E-03	1.21E-02	2.75E-02	5.29E-02			
Sampling connections	2.20E-02	2.20E-02	9.63E-02	9.63E-02			
Pressure relief valves	4.65E-04	4.65E-04	2.04E-03	2.04E-03			
Total PTE	0	.14	0	.62			

Notes:

1. All agitators are assumed seal-less.

2. Assume 2% of equipment leaking.

- 3. Emissions Factors from Table 2-11, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.
- 4. Emissions Factors from Table 2-9, EPA-453/R-95-017, "Protocol for Equipment Leak Emission Estimates", November 1995. Since there is no specific rate given for sample lines, compressor seals, and OELs, the light liquid pump rate is assumed.

Vendor	Faulament	-				
	Equipment					
Package Number	Tag					
Number	HG-45X					
	HG45X					
	HA-450					
HM-474	HA-474					
	HG-413					
	HG-423					
	HG-433					
	HG-443					
	HG-450					
	HG-452					
	HG-453					
	HG-460					
	HG-461					
	HG-485					
HM-201	HG-201A					
HM-201	HG-201B					
HM-1610	HG-1636					
	HG-1811A					
	HG-1811B					
	HG-913A					
	HG-913B					
						·

Vendor	Equipment					
Package Number	Tag					
HM-203	HC-203					
	HA-460					
HM-510	HA-510					
HM-514	HA-514					
HM-520	HA-520					
HM-524	HA-524					
HM-530	HA-530					
HM-534	HA-534					
HM-540	HA-540					
HM-544	HA-544					
HM-560	HA-550					
HM-564	HA-554					
HM-550	HA-550					
HM-554	HA-554					
HM-505	HC-515					
1111 303	110 515					
HM-505	HC-525					
HM-505	HC-535					
r11VI-5U5	nu-535					
HM-508	HC-545					
UNA 500	HC CCC					
HM-508	HC-565					
HM-508	HC-555					
	HC-875A					
	HG-401					
	HG-415					
	HG-425					
	HG-435					
	HG-445					
	HG-455					
	HG-474					
	HG-474 HG-475					
	HG-478					
HM-505	HG-505A					
HM-505	HG-505B					
HM-508	HG-516A					
000-1011	HG-510A					
HM-508	HG-516B					
	HG-830A					
	AUCO-DH					
	HG-830B					
	110 022					
	HG-832					
	HG-852					
	HG-870A					
	HG-870B					
	HG-876					
T	HG-880A					
	HG-880B					
	HG-885					
	HG-1862A					
	HC 10000					
	HG-1862B					
	HA-1819					
	107-1013					
	HA-1820					
	HA-1821					
	HA-1822					
	NA-1822					
HM-909	HM-909					
1111-909						
	HG-102A					
	HG-102B HG-114A					
	HG-114A HG-114B					
	HG-152A					
	HG-152B					
	HG-1542					
	HG-1543					
	HG-1802					

Boiler, Existing

99.5 MMBtu/hr

Boiler NG Usage

Boiler	99,500,000	Btu/hr
	1021	Btu/scf
	97453	scf/hr

Pollutant	Emission Factor*	Emission	Emission
Pollutant	(lb/10^6 scf)	lb/hr	tpy
CO ₂	120,000	11694	51222
CH ₄	2	0.22	0.982
Lead	0.0005	0.00	0.000
N ₂ O	2.2	0.21	0.939
N ₂ O(Controlled low-NO _X Burner)	0.64	0.06	0.273
PM (total)	7.6	0.74	3.244
PM(condensible)	7.6	0.74	3.244
PM (filterable)	7.6	0.74	3.244
SO ₂	0.6	0.06	0.256
ТОС	11	1.07	4.695
Methane	2.3	0.22	0.982
VOC	5.5	0.54	2.348
	34.6	3.37	14.76
CO	7.0	0.69	3.0

* Emissions factors are derived from AP-42 Chapter 1.4, Tables 1.4-1 and 1.4-2.

Boiler Fuel Oil Usage

Boiler (Btu/hr)	99,500,000
Boiler (gal/hr)	711

Max hours per year

720

	FACTOR	EMISSIONS	EMISSIONS	
POLLUTANT	(lb/1000 gal)	(lb/hr)	(tpy)	
CO ₂	22,300	15849	5705.61	
N ₂ O	0.26	0.2	0.07	
PM	2	1.4	0.51	
SO ₂	71	50.5	18.17	
TOC	0.252	0.18	0.06	
CH ₄	0.052	0.04	0.01	
VOC	0.2	0.1	0.05	
NO _X	20	14.2	5.12	
CO	5	3.6	1.28	

The following AP-42 emissions factors rep	resent the em	issions from th	nis process:	
	F	PM (kg/1000 kg	g)	
	f	ilterable cond	densable t	otal
Cement unloading to elevated storage silo (pneumat	ic)1			0.0005
Atmospheric hydrator with wet scrubber2		0.033	0.0067	0.0397
1 Table 11.17-1 (Metric Units).				
2 TABLE 11.12-1 (METRIC UNITS)				
Emissions of PM				
Cement unloading to elevated storage silo (pneumat	ic)	0.0018 lb/h	r	
Atmospheric hydrator with wet scrubber	,	0.1423 lb/h		
·······	total	0.1441 lb/h		0.63 tpy

Sarsaparilla Alternate Operating Scenario

The total flow rate of these compounds will be up to	100 kg/hr
Annual estimated maximum venting will be up to	50 hr/yr
Total Annual emissions:	11,023.10 lb/yr
	5.51 tpy

Appendix P Pertinent Applicability Determinations for New Source Performance Standards⁷⁸

U.S. Environmental Protection Agency Applicability Determination Index

Control Number: 9700112

Category:	NSPS			
EPA Office:	Region 3			
Date:	06/19/1997			
Title:	Pharmaceutical Solvent Recovery Tarantino, Brian			
Recipient:				
Author:	Maslany, Thomas			
Subparts:	Part 60, III, SOCMI Air Oxidation Units			
	Part 60, NNN, SOCMI Distillation Operations			
	Part 60, RRR, VOC Emissions from SOCMI Reactor Processes			
	Part 60, VV, SOCMI Equipment Leaks			
References:	60.489			

Abstract:

Q: Are Merck & Co., Inc.'s pharmaceutical solvent distillation facilities subject to the Synthetic Organic Chemicals Manufacturing Industry (SOCMI) NSPS (Subparts VV, III, NNN, RRR)?

A: No. Solvent recovery operations do not "produce" chemicals, and would thus not be subject to the referenced SOCMI NSPS Subparts, so long as Merck continues to operate these processes as outlined in its letter.

Letter:

June 19, 1997

Mr. Brian J. Tarantino, P.E. Merck & Co., Inc. One Merck Drive P.O. Box 100 Whitehouse Station, NJ 08889-0100

Re: Applicability of New Source Performance Standards (NSPS) for the Synthetic Organic Chemicals Manufacturing Industry (SOCMI)

Dear Mr. Tarantino:

This letter is in response to your January 10, 1997 letter to Ms. Robin Moran of my staff and Mr. David Beck of the Office of Air Quality Planning and Standards, regarding the applicability of the SOCMI NSPS. In your letter, you requested the U.S. Environmental Protection Agency's (EPA) written concurrence that Merck's solvent distillation facilities are not subject to the SOCMI NSPS (40 CFR 60, Subparts VV, III, NNN, and RRR), provided that they are operated as described in your letter.

The four NSPS referenced above regulate the following types of SOCMI operations: 1) Subpart VV - equipment leaks; 2) Subpart III - air oxidation processes; 3) Subpart NNN distillation operations; 4) Subpart RRR - reactor processes. Generally, Subparts III, NNN, and RRR apply to each affected facility (as defined in the respective Subpart) that "produces" any of the listed chemicals (as defined in the respective Subparts) as a product, co-product, by-product, or intermediate. Subpart VV, written in a similar fashion, states that the provisions apply to affected facilities in the synthetic organic chemicals manufacturing industry, and the term "synthetic organic chemicals manufacturing industry" is defined as "the industry that produces, as intermediates or final products, one or more of the chemicals listed in 40 CFR 60.489."

From your letter, we understand that Merck purchases all of the solvent it uses and that Merck's solvent recovery operations do not "produce" solvents, but merely separate the solvents from complex mixtures for reuse. We further understand that the solvents in the waste stream for recovery are not chemically changed in the course of pharmaceutical processing, but rather are simply mixed with other solvents and impurities. Your letter also provided an illustrative example of a typical solvent recovery process to demonstrate that the solvents are not "produced".

Based on the description of Merck's processes contained in your letter, EPA concurs that the solvent recovery operations do not "produce" chemicals, and thus would not be subject to the SOCMI NSPS (Subparts VV, III, NNN, and RRR), provided that Merck continues to operate these processes in the manner described in your letter. I want to clarify, however, that EPA does not agree that Merck's operations are not subject to these NSPS on the basis that they are not considered part of the SOCMI industry (i.e., because Merck's batch chemical manufacturing activities fall under SIC Codes 2833 (medicinal chemicals and botanical products) and 2834 (pharmaceutical preparations, rather than the SOCMI industry). As described above, these NSPS Subparts apply to each affected facility that "produces" any of the listed chemicals (as defined in each Subpart). Again, EPA does agree that Merck's solvent recovery operations do not "produce" chemicals and, thus, are not subject to these NSPS on that basis.

Should you have any further questions on this determination, please contact Ms. Robin Moran at (215) 566-2064.

Sincerely,

Thomas J. Maslany, Director Air, Radiation & Toxics Division

U.S. Environmental Protection Agency Applicability Determination Index

Control Number: 9800007

Category:	NSPS
EPA Office:	Region 5
Date:	08/14/1997
Title:	Subpart NNN Methanol Recovery Process
Recipient:	Miller, Bradley
Author:	Czerniak, George
Subparts:	Part 60, NNN, SOCMI Distillation Operations
References:	60.660

Abstract:

Q: Does 40 CFR part 60 Subpart NNN apply to a methanol recovery process? A: Solvent recovery for SOCMI distillation operations are generally exempt if the distillation operation, which is used to recover and purify listed feedstock chemical, reuses the recovered and purified chemicals in the same distillation process unit to produce a non-listed SOCMI chemical. In this case, the methanol recovered replaces virgin methanol in a process unit instead of sending it through the sewer system. Therefore, the methanol recovery process is not subject to 40 CFR Part 60 Subpart NNN.

Letter:

August 14, 1997

Mr. Bradley Miller Hamilton County Environmental Services Air Quality Division 1632 Central Parkway Cincinnati, Ohio 45210

Dear Mr. Miller:

This is in response to your February 25, 1997, letter addressed to William MacDowell, of my staff, regarding an applicability determination for Cincinnati Specialties located in Cincinnati, Ohio. The applicable rule in question is 40 CFR Part 60 Subpart NNN, Standards of Performance for Volatile Organic Compound (VOC) Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Operations.

According to an October 5, 1990, applicability

determination, solvent recovery for SOCMI distillation operations are generally exempt if the distillation operation, which is used to recover and purify listed feedstock chemicals, reuses the recovered and purified chemicals in the same distillation process unit to produce a non-listed SOCMI chemical. Conversely, solvent recovery is subject to the standard if the final product of the distillation operation is a listed chemical, if the final product is used in another process, or if it is sold. Cincinnati Specialties operates a methanol recovery process. The methanol recovered replaces virgin methanol in one of its process units instead of sending it through the sewer system.

After reviewing the regulation and the facility's operation, this office and the Office of Enforcement and Compliance Assurance at our headquarters have both determined that Cincinnati Specialties is not subject to 40 CFR Part 60 Subpart NNN. However, if modifications are made to the distillation operation, another review will be necessary to determine whether or not it is subject to 40 CFR Part 60 Subpart NNN.

If you should have any questions regarding this determination please call Margaret Sieffert, of my staff, at (312) 353-1151.

Sincerely yours,

George T. Czerniak, Chief Air Enforcement and Compliance Assurance Branch