

TEL 713.477.9211 FAX 713.475.6008

8600 Park Place Boulevard, Houston, Texas 77017 www.tpcgrp.com

February 26, 2020

Air Permits Initial Review Team (APIRT) Texas Commission on Environmental Quality Mail Code 163 12100 Park 35 Circle Austin, Texas 78753

RE: TCEQ Air Quality New Source Review Permit Amendment Applications TPC Group, LLC - Houston Plant NSR Permit Nos. 46307, 46426, and 22052 Customer Reference Number (CN): 603624289 Regulated Entity Number (RN):

To Whom It May Concern:

TPC Group LLC (TPC) currently owns and operates the Houston Plant, a petrochemical production facility located in Houston, Texas at 8600 Park Place Blvd. TPC Group LLC has been assigned Texas Commission on Environmental Quality (TCEQ) Customer Reference Number (CN) CN603624289. The Houston Plant has been assigned TCEQ Regulated Entity Reference Number (RN) 100219526 and TCEQ Air Quality Account Number HG-0562-P.

With this submittal, TPC requests to authorize a butadiene (BD) capacity increase and reliability improvement project (BD expansion). The BD expansion will include units authorized under New Source Review (NSR) Permit Nos. 46307, 46426, and 22052. Therefore, a separate amendment application is being included for each permit. However, all new, modified, and affected sources are evaluated under one Federal New Source Review (FNSR) Analysis and one Air Quality Analysis (AQA).

TPC requests to expedite all three permit amendment applications. Associated capital costs for the BD expansion project will be greater than \$7.5 million. Therefore, one permit application fee in the amount of \$75,000 and one expedited processing fee of 20,000 have been submitted under separate cover to the TCEQ Revenue Section.

Confidential information is being submitted under a separate cover.

FAX 713.475.6008 8600 Park Place Boulevard, Houston, Texas 77017 www.tpcgrp.com

TEL 713.477.9211

If you have any questions regarding this submittal or require additional information, please feel free to contact me at (713) 475-7409.

Sincerely,

Jason T. Sanders TPC Environmental Manager

Attachments

cc: TCEQ Regional Office, Region 12
 Bureau Chief of Pollution Control and Prevention, Environmental Health Division, City of Houston
 Harris County Pollution Control Services Department, Harris County

...... .

NNSR/PSD PERMIT APPLICATION TPC Group LLC > Houston Plant

Permit No. 46307

Prepared By:

TRINITY CONSULTANTS

Trinity Consultants 1800 West Loop South Suite 1000 Houston, TX 77027 (713) 552-1371

February 2020

Project No. 194402.0098

Environmental solutions delivered uncommonly well

	CONTENTS

1. EXECUTIVE SUMMARY	1-1
2. TCEQ FORMS	2-1
3. AREA MAP	3-1
4. PLOT PLAN	4-1
5. PROCESS DESCRIPTION & PROCESS FLOW DIAGRAM	5-1
5.1. Process Description	
5.2. Project Description	
5.3. Process Flow Diagram	
6. EMISSION CALCULATIONS	6-1
6.1. Process Vents	
6.2. Storage Tanks (EPNs T-81, T-82, T-86, TK-2D6)	
6.3. Cooling Tower (EPN F-CT-10)	
6.4. Fugitive Components (EPN FUG-BD-V)	
6.5. MSS Activities (EPNs MSS-BD, MSS-FLR)	
6.6. Wastewater (EPNs WW-PN, EPN F-10A)	
7. FEDERAL NEW SOURCE REVIEW ANALYSIS	7-1
7.1. NNSR And PSD Applicability Analysis	
7.2. Netting	
7.2.1. Contemporaneous Project Netting	
7.2.2. Creditable NO _X Reductions	
7.2.3. Project Timeline	
8. LOWEST ACHIEVABLE EMISSION RATE (LAER)	8-1
8.1. VOC LAER Analysis	
8.1.1. Process Vents	
8.1.2. Fixed Roof Storage Tanks (EPNS T-81, T-82, T-86)	
8.1.3. Internal Floating Roof Storage Tank (EPN TK-2D6)	
8.1.4. Cooling Tower (EPN F-CT-10)	
8.1.5. Fugitives (EPN FUG-BD-V)	
8.1.6. MSS (EPNS MSS-BD, EPN-FLR)	
9. BEST AVAILABLE CONTROL TECHNOLOGY	9-1
9.1. BACT Methodology	
9.2. PM/PM ₁₀ /PM _{2.5} BACT Analysis	
9.2.1. Cooling Tower (EPN F-CT-10)	
9.3. GHG BACT ANALYSIS	
9.4. State Only BACT Analysis	
9.4.1. Wastewater (EPNS WW-PN, EPN F-10A)	
10. AIR QUALITY MODELING	10-1
10.1. Modeling Analysis	
10.2. Analysis of Class I Area Impacts	

10.3. Additional Impacts Analysis	
11. NNSR REQUIREMENTS 11.1. NNSR Compliance Review 11.2. NNSR Offsets 11.3. Alternative Site Analysis	11-1 11-1 11-1 11-1
12. GENERAL APPLICATION REQUIREMENTS	12-1
13. PERMIT FEE AND PROFESSIONAL ENGINEER CERTIFICATION	13-1
APPENDIX A: EMISSION CALCULATIONS	A-1
APPENDIX B: FNSR ANALYSIS	B-1
APPENDIX C: LAER/BACT SEARCH RESULTS	C-1
APPENDIX D: TCEQ EQUIPMENT FORMS	D-1

TPC Group LLC (TPC) currently owns and operates the Houston Plant, a petrochemical production facility located in Houston, Texas at 8600 Park Place Blvd. TPC Group LLC has been assigned Texas Commission on Environmental Quality (TCEQ) Customer Reference Number (CN) CN603624289. The Houston Plant has been assigned TCEQ Regulated Entity Reference Number (RN) 100219526 and TCEQ Air Quality Account Number HG-0562-P.

With this submittal, TPC requests to amend New Source Review (NSR) Permit No. 46307 to authorize a butadiene (BD) capacity increase and reliability improvement project (BD expansion). The BD expansion project will involve the construction of new units and modifications to existing units. Emissions sources include cooling towers, storage tanks, fugitive components, wastewater, railcar loading, and maintenance, startup, and shutdown (MSS) activities. In addition to amending NSR 46307, the project affects units permitted under NSR Permit Nos. 22052 and 46426. Therefore, TPC is submitting all three amendment applications concurrently, and evaluating all new, modified, and affected sources under one Federal New Source Review (FNSR) Analysis and one Air Quality Analysis (AQA) found within this submittal.

The Houston Plant is located in Harris County, which is classified as serious non-attainment area for ozone and an attainment or unclassified area for all other criteria pollutants with respect to the National Ambient Air Quality Standards (NAAQS). The proposed project triggers Nonattainment New Source Review (NNSR) permitting requirements for volatile organic compounds (VOC). In addition, the proposed project triggers Prevention of Significant Deterioration (PSD) permitting requirements for particulate matter (PM), particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM_{2.5}), and Greenhouse Gas (GHG). All other pollutant emission increases are less than major modification triggering thresholds.

Supporting documentation for this application is provided in the following sections. Included in Section 2 of this permit application is Form PI-1 General Application and Table 2 Material Balance. A Microsoft Excel copy of the Form PI-1 General Application is also submitted electronically. An area map and plot plan are included in Sections 3 and 4, respectively. A brief process description is provided in Section 5. Emission calculations are discussed in Section 6. FNSR applicability is covered in Section 7. The summary of Federal Best Available Control Technology (BACT), State BACT, and Federal Lowest Achievable Emission Rate (LAER) reviews are provided in Sections 8 and 9. Section 10 provides an air quality analyses overview. Section 11 discusses NNSR requirements. A review of general application requirements is provided in Section 12. The associated permit application fee and expedited processing fee has been submitted under separate cover to the TCEQ Revenue Section and a copy of the permit fee check is included in Section 13 for reference, along with the Professional Engineer (P.E.) Certification. In addition, the following information is provided in the attached appendices of this application:

- > Appendix A Emissions Calculations
- > Appendix B FNSR Analysis
- > Appendix C BACT/LAER Search Results
- > Appendix D TCEQ Equipment Forms

2. TCEQ FORMS

Form PI-1 General Application

		pplicant Information	
-		ed TCEQ application workbook and any	
necessary attachments. Exc	ept for inputting th	e requested data and adjusting row height and	Lagraa
		plication workbook in any way, including but	l agree
not limited to changing forn	nulas, formatting, c	ontent, or protections.	
A. Company Information			
Company or Legal Name:		TPC Group LLC	
Permits are issued to either th	e facility owner or op	perator, commonly referred to as the applicant or per	mit holder. List
the legal name of the compan	y, corporation, partn	ership, or person who is applying for the permit. We	will verify the
legal name with the Texas Se	cretary of State at (5	12) 463-5555 or at:	
https://www.sos.state.tx.us			
Texas Secretary of State Cha	rter/Registration		
Number (if given):	-		
B. Company Official Contac	t Information: must	not be a consultant	
Prefix (Mr., Ms., Dr., etc.):	Mr.		
First Name:	Michael		
Last Name:	Bankston		
Title:	Plant Manager	•	
Mailing Address:	8600 Park Plac		
Address Line 2:			
City:	Houston		
State:	Texas		
ZIP Code:	77017		
Telephone Number:	713-475-7709		
Fax Number:	713-475-6008		
Email Address:		ton@tpcgrp.com	
		nust have the authority to make binding agreements	and
	•	y be a consultant. Additional technical contact(s) c	
in a cover letter.		,	
Prefix (Mr., Ms., Dr., etc.):	Mr.		
First Name:	Jason		
Last Name:	Sanders		
Title:		mental Manager	
Company or Legal Name:	TPC Group LL		
Mailing Address:	8600 Park Plac		
Address Line 2:			
City:	Houston		
State:	Texas		
ZIP Code:	77017		
Telephone Number:	713-475-7409		
Fax Number:	10 10 1403		
Email Address:	Jason Sanders	s2@tpcgrp.com	
D. Assigned Numbers	Subon.Ounder		
-	signed when a Coro	Data Form is initially submitted to the Central Regist	w The RN is
	-	estigation or if the agency has issued an enforcement	•
		questions blank and include a Core Data Form with	
submittal. See Section VI.B. b			
		each business, governmental	
	ique number given il	vaon business, governinental	

Enter the CN. The CN is a unique number given to each business, governmental	
body, association, individual, or other entity that owns, operates, is responsible for,	CN603624289
or is affiliated with a regulated entity.	

Enter the RN. The RN is a unique agency assigned number given to each person, organization, place, or thing that is of environmental interest to us and where regulated activities will occur. The RN replaces existing air account numbers. The RN for portable units is assigned to the unit itself, and that same RN should be used when applying for authorization at a different location.	RN100219526
II. Delinquent Fees and Penalties	
Does the applicant have unpaid delinquent fees and/or penalties owed to the TCEQ?	

This form will not be processed until all delinquent fees and/or penalties owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ are paid in accordance with the Delinquent Fee and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at:

https://www.tceq.texas.gov/agency/financial/fees/delin

III. Permit Information

A. Permit and Action Type (multiple may be selected, leave no blanks) Additional information regarding the different NSR authorizations can be found at: https://www.tceq.texas.gov/permitting/air/guidance/authorize.html

Select from the drop-down the type of action being requested for each permit type. If that permit type does not apply, you MUST select "Not applicable".

Provide all assigned permit numbers relevant for the project. Leave blank if the permit number has not yet been assigned.

Permit Type	Action Type Requested	Permit Number (if assigned)
	(do not leave blank)	
Minor NSR (can be a Title V major source): Not applicable, Initial, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Relocation/Alteration, Change of Location, Alteration, Extension to Start of Construction	Amendment	46307
Special Permit: Not applicable, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
De Minimis: Not applicable, Initial	Not applicable	
Flexible: Not applicable, Initial, Amendment, Renewal, Renewal Certification, Renewal/Amendment, Alteration, Extension to Start of Construction	Not applicable	
PSD: Not applicable, Initial, Major Modification	Major Modification	46307
Nonattainment: <i>Not applicable, Initial, Major</i> Modification	Major Modification	46307
HAP Major Source [FCAA § 112(g)]: Not applicable, Initial, Major Modification	Not applicable	
PAL: Not applicable, Initial, Amendment, Renewal, Renewal/Amendment, Alteration	Not applicable	
GHG PSD: Not applicable, Initial, Major Modification, Voluntary Update	Not applicable	

B. MSS Activities			
How are/will MSS activities for sources associated	This permit		
with this project be authorized?			
C. Consolidating NSR Permits	rouit with this sat	ion2	
Will this permit be consolidated into another NSR pe	ermit with this act	1011?	No
Will NSR permits be consolidated into this permit wi	th this action?		No
D. Incorporation of Standard Permits, Standard I		Vor Pormite By Bule (PPP)	
To ensure protectiveness, previously issued authorized			or PBRs)
including those for MSS, are incorporated into a per	•	• • • •	,
and/or amendment, consolidation (in some cases) n			-
regarding incorporation can be found in 30 TAC § 1	16.116(d)(2), 30 ⁻	TAC § 116.615(3) and in this me	mo:
https://www.taas.tovas.cov/aaato/public/parmitting/		na06 ndf	
<u>https://www.tceq.texas.gov/assets/public/permitting/</u> Are there any standard permits, standard exemption	s or PBRs to		
be incorporated by reference?		No	
Are there any PBR, standard exemptions, or standa	•		
associated to be incorporated by consolidation? Not calculations, a BACT analysis, and an impacts analy		No	
attached to this application at the time of submittal f			
authorization to be incorporated by consolidation.			
E Associated Enderal Operating Permits			

E. Associated Federal Operating Permits

Is this facility located at a site required to obtain a site operating permit (SOP) or general operating permit (GOP)?		Yes
Is a SOP or GOP review pending for this source, area, or site?		No
If required to obtain a SOP or GOP , list all associated permit number(s). If no associated permit number has been assigned yet, enter "TBD":	SOP 1598	

IV. Facility Location and General Information		
A. Location		
County: Enter the county where the facility is physically located.	Harris	
TCEQ Region	Region 12	
County attainment status as of Sept. 23, 2019	Serious Ozone nonattainment	
Street Address:	8600 Park Place Blvd.	
City: If the address is not located in a city, then enter the city or town closest to the facility, even if it is not in the same county as the facility. ZIP Code: Include the ZIP Code of the physical	Houston	
facility site, not the ZIP Code of the applicant's mailing address.	77017	
Site Location Description: If there is no street address, provide written driving directions to the site. Identify the location by distance and direction from well-known landmarks such as major highway intersections.		
Use USGS maps, county maps prepared by the Tex such as Google Earth to find the latitude and longitu		ware application
Latitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Latitude is the angular distance of a location north of the equator and will always be between 25 and 37 degrees north (N) in Texas.	29.699166	
Longitude (in degrees, minutes, and nearest second (DDD:MM:SS)) for the street address or the destination point of the driving directions. Longitude is the angular distance of a location west of the prime meridian and will always be between 93 and 107 degrees west (W) in Texas.	95.253888	
Is this a project for a lead smelter, concrete crushin facility?	g facility, and/or a hazardous waste management	No
B. General Information		
Site Name:	Houston Plant	
Area Name: Must indicate the general type of operation, process, equipment or facility. Include numerical designations, if appropriate. Examples are Sulfuric Acid Plant and No. 5 Steam Boiler. Vague names such as Chemical Plant are not acceptable.	Houston Plant - Butadiene (BD) Unit	
Are there any schools located within 3,000 feet of the site boundary?	Yes	

Yes

C. Portable Facility			
Permanent or portable facility?		Permanent	
D. Industry Type			
Principal Company Product/Business:		1,3 Butadiene, MTBE, Isobutylene, and Other	C4 Products
A list of SIC codes can be found at:			
https://www.naics.com/sic-codes-industry-	drilldown/		
Principal SIC code:		2869	
NAICS codes and conversions between N	IAICS and	SIC Codes are available at:	
https://www.census.gov/eos/www/naics/			
Principal NAICS code:		325100	
E. State Senator and Representative for	r this site		
This information can be found at (note, the	e website i	is not compatible to Internet Explorer):	
https://wrm.capitol.texas.gov/			
State Senator:		Carol Alvarado	
District:		6	
State Representative:		Mary Ann Perez	
District:		144	
	V. P	roject Information	
A. Description		•	
	•	ng to amend NSR Permit No. 46307 to authoriz the Houston Plant in conjunction with the BD e	-
B. Project Timing			
Authorization must be obtained for many p anything other than site clearance or site p	preparation	efore beginning construction. Construction is brond n. Enter the date as "Month Date, Year" (e.g. J	
	uarter 2022	1	
	arter 2022	2	
C. Enforcement Projects			
Is this application in response to, or relate enforcement action?	d to, an aç	gency investigation, notice of violation, or	No
D. Operating Schedule			-
Will sources in this project be authorized to	o operate	8760 hours per year?	Yes
	VI. Ar	oplication Materials	

All representations regarding construction plans and operation procedures contained in the permit application shall be conditions upon which the permit is issued. (30 TAC § 116.116)

A. Confidential Application Materials

Is confidential information submitted with this application?

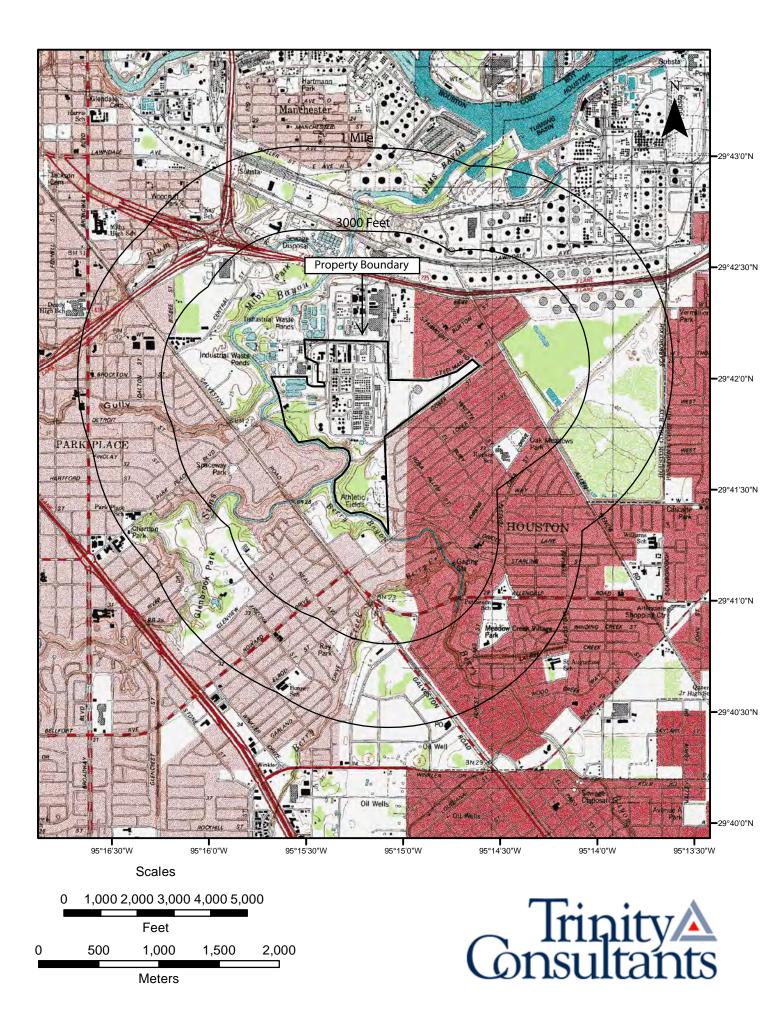
If yes, is each confidential page marked "CONFIDENTIAL" in large red letters? Yes

THSC §382.041 requires us not to disclose any information related to manufacturing processes that is marked Confidential. Mark any information related to secret or proprietary processes or methods of manufacture Confidential if you do not want this information in the public file. All confidential information should be separated from the application and submitted as a separate file. Additional information regarding confidential information can be found at: https://www.tceq.texas.gov/permitting/air/confidential.html

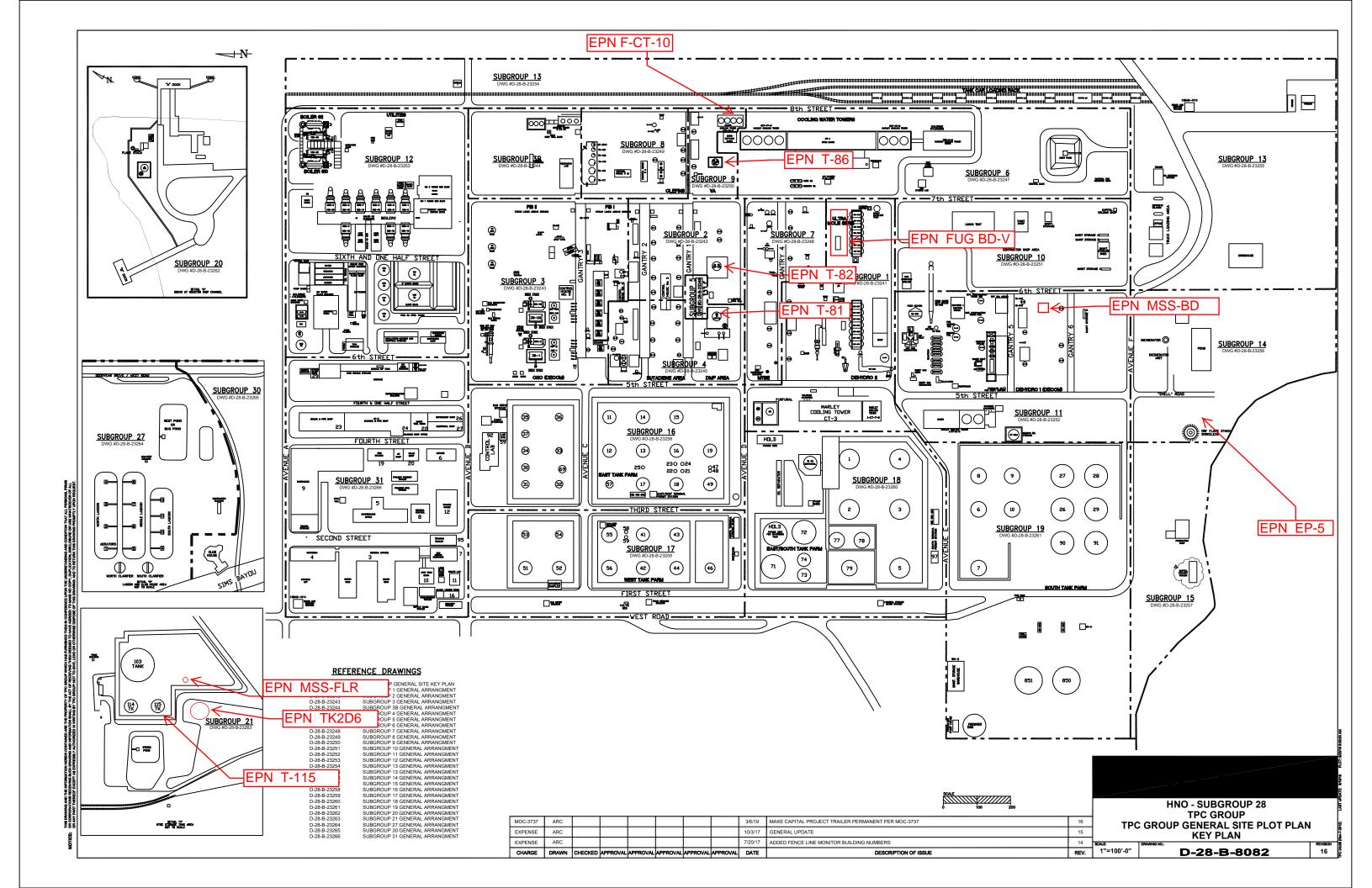
B. Is the Core Data Form (Form 10400) attached?	No
https://www.tceq.texas.gov/assets/public/permitting/centralregistry/10400.docx	
C. Is a current area map attached?	Yes
Is the area map a current map with a true north arrow, an accurate scale, the entire plant property, the location of the property relative to prominent geographical features including, but not limited to, highways, roads, streams, and significant landmarks such as buildings, residences, schools, parks, hospitals, day care centers, and churches?	Yes
Does the map show a 3,000-foot radius from the property boundary?	Yes
D. Is a plot plan attached?	Yes
Does your plot plan clearly show a north arrow, an accurate scale, all property lines, all emission points, buildings, tanks, process vessels, other process equipment, and two bench mark locations?	Yes
Does your plot plan identify all emission points on the affected property, including all emission points authorized by other air authorizations, construction permits, PBRs, special permits, and standard permits?	Yes
Did you include a table of emission points indicating the authorization type and authorization identifier, such as a permit number, registration number, or rule citation under which each emission point is currently authorized?	N/A
E. Is a process flow diagram attached?	Yes
Is the process flow diagram sufficiently descriptive so the permit reviewer can determine the raw materials to be used in the process; all major processing steps and major equipment items; individual emission points associated with each process step; the location and identification of all emission abatement devices; and the location and identification of all waste streams (including wastewater streams that may have associated air emissions)?	Yes
F. Is a process description attached?	Yes
Does the process description emphasize where the emissions are generated, why the emissions must be generated, what air pollution controls are used (including process design features that minimize emissions), and where the emissions enter the atmosphere?	Yes
Does the process description also explain how the facility or facilities will be operating when the maximum possible emissions are produced?	Yes
G. Are detailed calculations attached? Calculations must be provided for each source with new or changing emission rates. For example, a new source, changing emission factors, decreasing emissions, consolidated sources, etc. You do not need to submit calculations for sources which are not changing emission rates with this project. Please note: the preferred format is an electronic workbook (such as Excel) with all formulas viewable for review. It can be emailed with the submittal of this application workbook.	Yes
Are emission rates and associated calculations for planned MSS facilities and related activities attached?	Yes
H. Is a material balance (Table 2. Form 10155) attached?	Yes

Table 2 (Form 10155), entitled Material Balance: A material balance representation may be required for all applications to confirm technical emissions information. Typically this is required for refining and chemical manufacturing processes involving reactions, separations, and blending. It may also be requested by the permit reviewer for other applications. Table 2 should represent the total material balance; that is, all streams into the system and all streams out. Additional sheets may be attached if necessary. Complex material balances may be presented on spreadsheets or indicated using process flow diagrams. All materials in the process should be addressed whether or not they directly result in the emission of an air contaminant. All production rates must be based on maximum operating conditions.

I. Is a list of MSS activities attached?	Yes
Are the MSS activities listed and discussed separately, each complete with the authorization mechanism or emission rates, frequency, duration, and supporting information if authorized by this permit?	Yes
J. Is a discussion of state regulatory requirements attached, addressing 30 TAC Chapters 101, 111, 112, 113, 115, and 117?	Yes
For all applicable chapters, does the discussion include how the facility will comply with the requirements of the chapter?	Yes
For all not applicable chapters, does the discussion include why the chapter is not applicable?	Yes
K. Are all other required tables, calculations, and descriptions attached?	Yes


VII. Signature

The owner or operator of the facility must apply for authority to construct. The appropriate company official (owner, plant manager, president, vice president, or environmental director) must sign all copies of the application. The applicant's consultant cannot sign the application. **Important Note: Signatures must be original in ink, not reproduced by photocopy, fax, or other means, and must be received before any permit is issued.**


The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the project for which application is made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter 382; the Texas Clean Air Act (TCAA); the air quality rules of the Texas Commission on Environmental Quality; or any local governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I understand my signature indicates that this application meets all applicable nonattainment, prevention of significant deterioration, or major source of hazardous air pollutant permitting requirements. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.

Name:	Michael Bankston	
Signature:		
Original signature is required.		
Date:		

3. AREA MAP

4. PLOT PLAN

5. PROCESS DESCRIPTION & PROCESS FLOW DIAGRAM

5.1. PROCESS DESCRIPTION

TPC owns and operates a petrochemical production facility in Houston, Harris County, Texas. The plant currently manufactures various light olefin products including butadiene, methyl-tert-butyl ether (MTBE), butenes, diisobutylene (DIB), isobutylene, and polyisobutylene (PIB). Production at the Houston Facility occurs through several units, including the Butadiene Unit, the Raffinate MTBE Unit, Butene-1 Unit, the DIB unit, and the PIB unit. Along with process units, the Houston Plant operates several associated utility sources (e.g. boilers, cooling towers, etc.).

5.2. PROJECT DESCRIPTION

With this submittal, TPC requests to amend NSR Permit No. 46307 to authorize a butadiene (BD) capacity increase and reliability improvement project (BD expansion). The BD expansion will include the authorization of equipment for the ethyl-tert-butyl-ether (ETBE) and iso-octene (IC8) projects. New equipment and activities required for the BD expansion under NSR Permit No. 46307 include but are not limited to the following:

- Construct new towers, heat exchangers, condensate pots, centrifugal pumps and a holding drum for ETBE production;
- > Construct new towers and a floating roof tank for the project;
- > Debottleneck the vinyl acetylene (VAU) unit;
- > Replace vent gas recovery system compressor;
- > Reuse existing pressurized tank TK57 for furfural wash water storage;
- > Improve reliability of system operations for the North Absorber;
- Install new pumps for anticipated pipeline business changes;
- Relocate PIB railcar loading to new spur;
- > Reuse existing pressurized tank TK 8 to receive additional Raff;
- > Authorize storage of IC8 in existing floating roof tank TK 115;
- Construct new pressurized tank for additional BD storage;
- > Add Polygas production representation; and
- > Authorize new fugitive components in support of all BD expansion activities.
- Increase marine loading throughputs and construct a thermal oxidizer, Raff pump, and fugitive components (NSR Permit No. 22052 amendment); and
- > Construct a new boiler (NSR Permit No. 46426 amendment).

The project will result in new sources of emissions including fugitive components, MSS activities, and a floating roof tank (EPNs FUG-BD-V, MSS-BD, MSS-FLR, and TK-2D6 respectively). A new PIB railcar loading spur will be constructed but will not result in an increase of emissions, nor constitute a physical change or change in method of operation. Existing equipment authorized under NSR Permit No. 46307 that will be modified in support of the BD expansion project include a cooling tower (EPN F-CT-10) and storage tanks (EPNs T-81, T-82, and T-86). Although wastewater components will not be modified, TPC is requesting an update to its permit representations to account for pre-existing chemical constituents (EPNs F-10A and WW-PN). New and modified process equipment (e.g. towers) will be routed to the fuel gas system as primary controls and the plant flare as backup when the vent compressor is down. TPC is also requesting to decrease emissions from the flare (EPN EP-5).

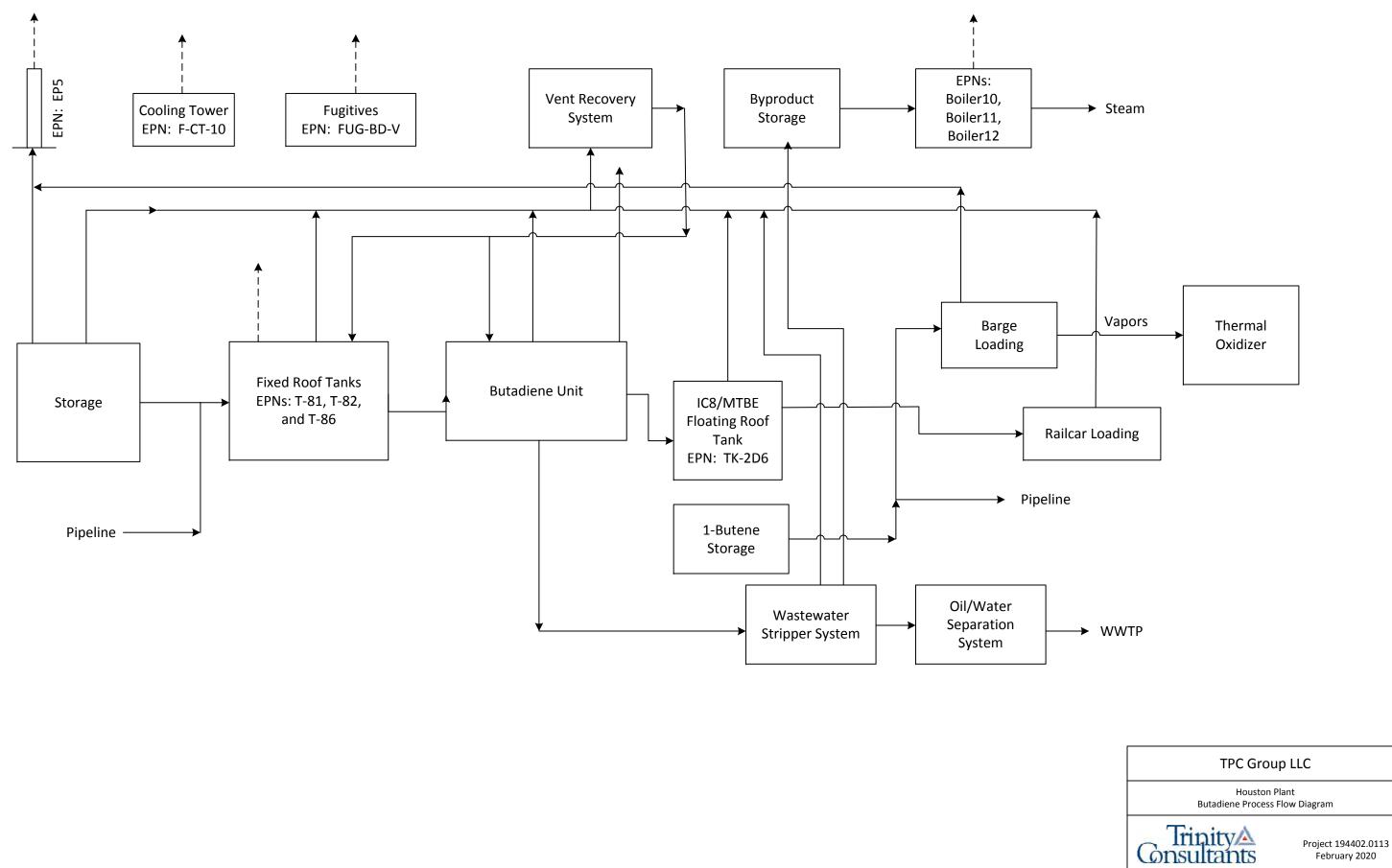
In addition to changes taking place under NSR Permit No. 46307, the BD expansion project will result in changes at the Cogen Permit (NSR Permit No. 46426) and the Dock Permit (NSR Permit No. 22052). Changes to the Cogen

Permit include the construction of one new boiler rated at 664 MMBtu/hr (EPN Boiler 12) and the shutdown and decommissioning of one existing boiler (EPN EP-H9). Boiler 12 will be fueled by a combination of natural and plant fuel gas. Plant fuel consists of vinyl acetylene unit (VAU) off gas, Dehydro No. 2 (DH2) off gas, and Plant off gas. No other sources authorized under Permit No. 46246 will be modified for this project.

New equipment to be authorized under the Dock Permit includes fugitive components (EPN FUG-BD-D), a Raff pump and a thermal oxidizer (EPN DOCK-TO). The thermal oxidizer will replace the existing dock flare (EPN E-563) as the primary mode of control for products loaded at the docks. The flare will remain at the facility to be used for maintenance, start-up, and shutdown (MSS) purposes when the thermal oxidizer is offline. Additionally, TPC requests to update product loading throughputs at the dock which will result in a change of authorized uncaptured loading emissions (EPN C-5). No other sources authorized under Permit No. 22052 will be modified for this project.

All remaining sources authorized under NSR Permit Nos. 46307, 46426, and 22052 are conservatively assumed to be affected sources. Table 5-1 shows all new and modified equipment included in the scope of this project.

NSR Authorization	EPN	Equipment Description	Equipment Designation
46307	FUG-BD-V	Process Fugitives	New
46307	TK-2D6	IFR MTBE/DIB/ETBE/IC8 Tank	New
46307	MSS-FLR	TK-2D6 Degass Flare	New
46307	MSS-BD	Vessel Openings	New
46307	F-CT-10	Cooling Tower	Modified
46307	T-81	Furfural/Water Tank	Modified
46307	T-82	Dimethyl Formamide Tank	Modified
46307	T-86	Furfural/Water Tank	Modified
46307	T-115	IFR MTBE/ETBE/IC8 Tank	Modified
46307	-	Process Vents	New - Routed to fuel gas system as primary control, flare as backup
46307	-	ETBE Towers	New
46307	-	ETBE Heat Exchangers	New
46307	-	ETBE Condensate Pots	New
46307	-	ETBE Centrifugal Pumps	New – Included as part of EPN FUG-BD-V.
46307	-	Methanol Holding drum	New
46307	-	IC8 Towers	New
46307	-	Vent Gas Recovery System Compressor	New – Included as part of EPN FUG-BD-V.
46307	-	Furfural/Water Tank 57	Modified pressurized tank – No emissions
46307	-	4D2 Condenser Set, Reboiler Bundles, Forced Recirculation	
46307	-	Pipeline Pumps	New – included as part of EPN FUG-BD-V.


Table 5-1. New and Modified Equipment

NSR Authorization	EPN	Equipment Description	Equipment Designation
46307	-	PIB Railcar Spur	Change of location
46307	-	Raff Tank 8	Modified pressurized tank – No emissions
46307	-	D Tank New pressurized tank– No emissions	
46307	-	3D Pump New – No emissions	
22052	DOCK-TO	Dock Thermal Oxidizer New	
22052	FUG-BD-D	Docks Fugitives New	
22052	-	Raff PumpNew – Included as part of FUG-BD-D.	
46426	Boiler 12	Boiler 12 (664 MMBtu/hr) New	

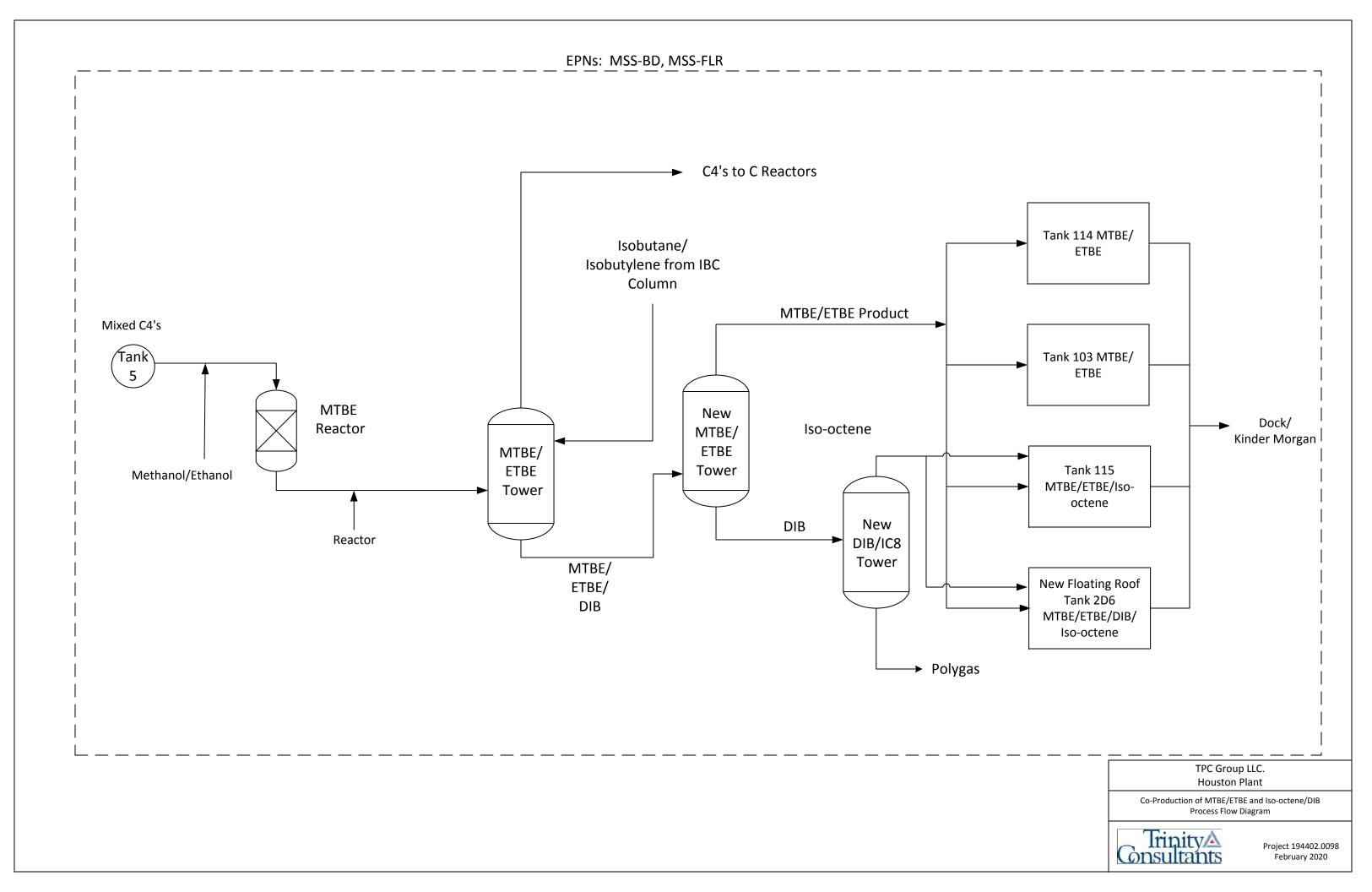

5.3. PROCESS FLOW DIAGRAM

Figure 5-1 is a process flow diagram for the proposed projects at the Houston Plant.

Figure 5-1 TPC HNO - Process Flow Diagram

February 2020

The following sections contain a detailed description of emission calculations for new and modified emission points at the Houston Plant to be authorized under this permit. Detailed emission calculations and sample calculations are provided in Appendix A.

6.1. PROCESS VENTS

The process vents resulting from the construction of new towers and process vessels as part of this project will be routed to the fuel gas system as primary control and to the process flare when the vent compressor is down. As part of this project, improvements in equipment reliability such as the vapor compressor will result in a decrease of emissions from the flare.

6.2. STORAGE TANKS (EPNS T-81, T-82, T-86, TK-2D6, T-115)

The hourly emissions for fixed roof tanks are calculated using *TCEQ Guidance Document - Estimating Short Term Emission Rates from Fixed Roof Tanks (February 2018).* Hourly emissions for the floating roof tank are based on *TCEQ Guidance Document - Short Term Emission Rates from Floating Roof Storage Tanks (February 2018).* The annual emissions are calculated in accordance with AP-42 Chapter 7, Section 7.1. Both hourly and annual emissions are based on the composition of the material being stored. Furthermore, the vapor pressure and molecular weight of vapor is based on the chemical properties of material being loaded at the maximum expected temperatures on an hourly basis and average temperatures for annual emissions.

6.3. COOLING TOWER (EPN F-CT-10)

Emissions from the cooling towers include VOC, PM, PM₁₀, and PM_{2.5}. The cooling tower will be equipped with a drift eliminator to control PM, PM₁₀, and PM_{2.5} emissions. The drift eliminator has an efficiency of 0.0005%. PM emissions with an efficiency of 0.0005 wt. % pursuant to Federal BACT are based on the recirculating water flow rate, the liquid drift total dissolved solids concentration, and the maximum drift rate. The PM₁₀ and PM_{2.5} emissions are estimated based on published particle size distributions. VOC emissions are based on water recirculating water flow rate and a proposed LAER VOC detection limit for cooling towers of 0.042 ppmw.

6.4. FUGITIVE COMPONENTS (EPN FUG-BD-V)

VOC fugitive emissions were calculated using the methodology described in the *TCEQ Air Permit Technical Guidance for Chemical Sources – Fugitive Guidance (June 2018)*. Fugitive emission factors for synthetic organic chemical manufacturing industry (SOCMI) without ethylene were selected. Control efficiencies from TCEQ's 28LAER Leak Detection and Repair (LDAR) monitoring program will be applied for all new process fugitive components in VOC service.

6.5. MSS ACTIVITIES (EPNS MSS-BD, MSS-FLR)

MSS activities will be performed periodically on newly installed equipment. The frequency/event duration of maintenance activities varies for different equipment types. These planned and predictable maintenance activities include equipment degassing routed to control, and uncontrolled equipment openings. New equipment will include towers, heat exchangers, pumps, drums, condensate pots, and a floating roof tank. Process equipment will vent to an existing plant flare. MSS activities from the floating roof tank will be routed to a

portable flare. Equipment clearing from new equipment like towers, drums, etc., is based on the vessel volume and a 500 ppmv organic concentration. Additional details are provided in Appendix A.

6.6. WASTEWATER (EPNS WW-PN, EPN F-10A)

The Houston Plant performed a reassessment of its wastewater treatment plant (WWTP) and as a result of the proposed project outlined in this report, the WWTP will result in an increase in its maximum allowable emission rates for the aerations ponds/clarifiers (EPN WW-PN) and the oil-water separator (EPN F-10A). As discussed in the pre-application meeting with the TCEQ, the increase in emissions is not related to this project and is not due to any physical or operational change and is therefore not a modification subject to nonattainment control requirements.

The Toxchem model (Version 4.4, April 2019) was used to estimate air emissions from the WWTP. The increase in emissions is due to the following changes to the WWTP: 1) updated contaminant concentrations and flowrates for the wastewater influent stream 2) adding user-defined compounds to the Toxchem compound database to accurately model compounds detected in the WWTP 3) adjusting WWTP unit parameters such as the mixed liquor suspended solids (MLSS) concentrations in the aeration ponds to reflect actual operations and 4) evaluating multiple operating scenarios.

The proposed flow rates and contaminant concentrations for the modeled wastewater influent stream were determined based on historical data and accounting the additional flows to the WWTP as a result from the BD Unit Amendment projects.

There are thirteen (13) chemicals expected in the wastewater treatment system. Of the thirteen chemicals, "octadiene" and "isobutane" were added to the Toxchem chemical database (i.e., user-defined chemicals). The chemical properties for these user-defined compounds were obtained from the chemical/scientific databases (i.e., Chemspider/PubChem/Yaws). Additionally, the Henry's Law Constant for Furfural was revised based on Appendix J of the proposed and promulgated rule for Standards of Performance for New Stationary Sources (NSPS) - Volatile Organic Compound Emissions from the Synthetic Organic Chemical Manufacturing Industry Wastewater (Docket# A-94-32).

The proposed maximum hourly and annual VOC emissions are based on the operating scenario with the highest emissions.

7.1. NNSR AND PSD APPLICABILITY ANALYSIS

As mentioned in Section 1, the Houston Plant is located in Harris County, which is nonattainment for ozone and attainment for all other FNSR pollutants. The Houston Plant is considered a major source under the (1) NNSR program for ozone with NO_X and VOC being the applicable precursors, and (2) PSD program for all other FNSR pollutants.

In addition to this permit application for the construction and authorization of new and modified equipment under NSR Permit No. 46307, TPC is submitting two separate concurrent permit applications for the proposed project (NSR Permit Nos. 22052 and 46426). As a result, TPC is considering the emissions from all three permit applications together for evaluation under one set of FNSR thresholds. As a result, TPC is subject to the relevant 30 TAC Chapter 116 requirements that require NNSR analyses for NO_X and VOC, and PSD analyses for SO₂, PM, PM₁₀, PM_{2.5}, CO, and CO₂e. A detailed review of the NNSR and PSD applicability analyses for the proposed projects are provided below with additional details included in Appendix B.

The NNSR and PSD applicability analyses are being conducted for the new, modified, and affected sources. New units resulting in project emissions increases (PEIs) include a boiler, thermal oxidizer, floating roof tank, fugitive components, and various MSS actives. Modified units consist of a cooling tower, fixed roof storage tanks, and uncaptured and controlled marine loading emissions. All remaining authorized units were conservatively assumed to be affected by the project. To determine whether the proposed project would result in a major modification, as defined by the PSD/NNSR rules, PEIs for modified and affected sources were calculated as the potential to emit (PTE) minus the baseline actual emission (BAE) rate. PEIs for new units are equal to their PTEs. The following steps outline the BAE to PTE methodology:

Step 1. Establish Baseline Period Emissions

The baseline period for an existing facility is any consecutive 24-month period within the 10-year period immediately preceding either the date the owner or operator begins construction of the project, or the date of a complete permit application submitted to the TCEQ. Therefore, the 10 years immediately preceding the date of construction were reviewed to identify the consecutive 24-month period with the highest emissions for each affected pollutant. The period from January 1, 2017 to December 31st, 2018 was used for calculation of baseline actual emissions for all affected FNSR pollutants.

Step 2. Calculate Baseline Actual Emissions

Baseline actual emissions for modified/affected units, in tons per year, are determined from annual emissions from continuous emissions monitoring systems (CEMS), current emission factors, and other sources.

Step 3. Calculate Potential to Emit

PTEs represent the maximum capacity of source to emit a pollutant under its physical and operational design. PTEs for modified sources were determined using the permit basis calculation methodology along with updated parameters being submitted in this permit amendment. PTEs for affected sources represent their currently authorized federally enforceable limits.

Step 4. Calculate Project Increases

PEIs for modified and affected sources were calculated as the PTE minus the BAE rate. PEIs for new units are equal to their PTEs.

VOC and NO_X PEIs resulting from the proposed project were compared to their respective NNSR significant emissions rate (SER). As shown in Table 7-1 below, the emission increases for VOC and NO_X are above their NNSR SERs. NNSR permitting requirements were triggered for VOC. Contemporaneous netting was performed for NO_X to net out of NNSR review. The other regulated pollutants are compared to the PSD SERs to determine PSD applicability.

The proposed emissions of SO₂ and CO are less than the applicable SER; therefore, no further PSD review is required for these pollutants. However, the emissions of PM, PM₁₀, PM_{2.5} and CO₂e are greater than the corresponding SERs, as shown in Table 7-1 below. Hence, the emission increases trigger PSD for PM, PM₁₀, PM_{2.5}, and CO₂e. Contemporaneous netting was performed for PM, PM₁₀ and PM_{2.5} to satisfy air quality analysis requirements. Additional PSD permitting requirements are addressed in the following sections. Appendix B also contains supporting documentation for the FNSR Analysis such as the FNSR TCEQ Tables 1F, 2F, 3F, and 4F.

	CO	NOx	РМ	PM ₁₀	PM _{2.5}	VOC	SO ₂	CO2e
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
VERP Permit No. 46307	10.21	2.27	3.39	2.30	0.04	60.61	0.00	7
Cogen Permit No. 46426	21.49	29.08	21.67	21.67	21.67	8.96	3.26	267,734
Dock Permit No. 22052	2.75	3.67	1.37	1.37	1.37	2.42	0.08	6,754
Project Emissions Increase	34.45	35.02	26.42	25.34	23.08	71.99	3.34	274,494
PSD/NNSR Significant Emission Rate	100	25	25	15	10	25	40	75,000
PSD/NNSR Netting Performed?	No	Yes	Yes	Yes	Yes	No	No	No
Contemporaneous Emissions Change	0.00	-290.38	24.84	24.05	21.95	0.00	0.00	0.00
Net Emissions Increase (NEI)	0.00	-255.36	51.26	49.38	45.03	0.00	0.00	0.00
PSD/NNSR Review Required?	No	No	Yes	Yes	Yes	Yes	No	Yes

Table 7-1. NNSR/PSD Applicability Summary

7.2. NETTING

7.2.1. Contemporaneous Project Netting

As discussed in Section 7-1, contemporaneous netting was performed for NO_X , PM, PM₁₀, and PM_{2.5} project emissions to demonstrate that the net emissions increase (NEI) for NO_X from the project is below its SER and satisfy PSD air quality analysis requirements for PM, PM₁₀, and PM_{2.5}.

Contemporaneous netting includes creditable emissions increases and decreases during the contemporaneous netting window. For conservatism, netting was performed 5 years from the date of submittal (February 2020). Hence, creditable reductions/increases were evaluated from January 2015 along with any future anticipated creditable reductions that would occur before the proposed project's start of operation. The proposed start of construction for the proposed project is the fourth quarter of 2021. The proposed start of operation is the first quarter of 2022.

7.2.2. Creditable NO_X Reductions

The contemporaneous changes for NO_X emissions include the shutdown of one boiler (EPN EP-H9) authorized under NSR Permit No. 46426. Creditable reductions for these heaters are based on 24-month baseline average emissions as reported in Emission Inventory Reports. All creditable emission reductions are identified in Table 3F for NO_X . All listed emission reduction activities will be in place prior to the startup of the proposed project.

7.2.3. Project Timeline

The start of construction for the proposed project is the fourth quarter of 2021 and scheduled to operate after completion in the first quarter of 2022. The shutdown of Boiler 9 (EPN -EP-H9) will be completed before the start of operation.

Title 30 TAC §116.150(d)(1) specifies that new and modified stationary sources in nonattainment areas must comply with the lowest achievable emission rate (LAER) for the specific pollutant for which nonattainment new source review (NNSR) is being conducted. LAER is defined in 30 TAC §116.12 as:

- (A) the most stringent emission limitation that is contained in the rules and regulations of any approved state implementation plan for a specific class or category of facility, unless the owner or operator of the proposed facility demonstrates that such limitations are not achievable; or
- (B) the most stringent emission limitation that is achieved in practice by a specific class or category of facilities, whichever is more stringent.

The LAER review takes technical feasibility into account but not economic reasonableness, which is considered in a Best Available Control Technology (BACT) analysis.

The Houston Plant is located in Harris County which is a part of the Houston Galveston Brazoria (HGB) area, designated as serious nonattainment for ozone. NO_X and VOC are the regulated precursors to ozone. VOC emissions from this project exceed the NNSR major source threshold of 25 tpy, with NO_X emissions netting out based on creditable decreases. Therefore, the proposed project's new and modified sources are subject to a LAER analysis for VOC only. The main aspect considered when determining LAER for VOC emissions was the most stringent emission limitation that is achieved in practice by a specific class or category of facilities as found in a search of the Reasonably Achievable Control Technology (RACT)/BACT/LAER (RBLC) database.

LAER candidates were identified through a search of the following:

- EPA's RBLC Database;
- CA's Clearinghouse;
- > Bay Area Air Quality Management District (BAAQMD) Guidance;
- > South Coast Air Quality Management District (SCAQMD) Guidance; and
- > TCEQ Tier I BACT and Technical Guidance.

The data obtained through these searches was combined and then sorted to identify LAER candidates. These results are presented in Appendix C of this application.

For the proposed project, the LAER analysis presented below follows this methodology to determine LAER limits for VOC from each new and modified emission point.

8.1. VOC LAER ANALYSIS

8.1.1. Process Vents

The BD expansion project will include process vents from new columns and other process equipment described in Section 5. Table 8-1 below summarizes control measures identified during the LAER analysis.

Source	Description
EPA RBLC	Route process vents to thermal oxidizer, boiler, etc.
CA Clearinghouse	No Entries Identified
BAAQMD Guidance	Control with 95%; 85% of emissions must be controlled by 98%.
SCAQMD Guidance	Route reactor vents to carbon absorber, afterburner, condenser, or scrubber. Control resin manufacturing vents by 95%.
TCEQ Tier I BACT/	Route to flare, any oxidizer, adsorber, absorber/scrubber, etc.
Technical Guidance	

Table 8-1 - Process Vent VOC Control Findings

Review of the findings indicates LAER as control of VOC process vents to a combustion device such as a thermal oxidizer or boiler with a minimum 99.9% VOC destruction efficiency.

TPC proposes as LAER routing the vents to the fuel gas system (e.g. the boilers authorized under NSR Permit No. 46426), which achieves a greater than 99.9% destruction efficiency. Routing to the fuel gas system will serve as the primary mode of control. When the fuel gas vapor recovery compressors are down, process vents are routed to a flare as back up control. The back up controls are expected to last no more than 200 hours per year, and the backup flare will meet all requirements of 40 CFR 60.18. The flare has a 99% destruction efficiency for species with less than three carbon atoms and a 98% destruction efficiency for species with three or more carbon atoms.

8.1.2. Fixed Roof Storage Tanks (EPNS T-81, T-82, T-86)

The BD expansion project will include three fixed roof tanks. Tanks T-81 and T-86 store a mixture of furfural and water. Tank T-82 stores dimethyl formamide. The VOC partial pressure for these products will always be low, less than 0.1 psia at all daily maximum liquid surface temperatures. Table 8-2 below summarizes control measures identified during the LAER analysis for fixed roof tanks storing low vapor pressure products.

Source	Description
EPA RBLC	Storage of SOCMII Liquids - Fixed Roof Tanks Best Maintenance Practices
CA Clearinghouse	20,000 gallons or greater Annual throughput does not exceed 6,327,000 gallons (materials with a vapor pressure less than 0.10 psia @ 70F do not count towards this limit). No carcinogenic materials stored in the tank per Rule 1401 (DMF is considered a toxic material). All tanks are vented to a thermal oxidizer (assumed 95% destruction efficiency for VOC).
BAAQMD Guidance	Fixed roof tanks exempt from vapor control for materials < 0.5 psia.
SCAQMD Guidance	No additional controls for fixed roof tanks for materials < 0.1 psia.
TCEQ Tier I BACT/	Fixed roof with submerged fill. Uninsulated exterior surfaces exposed
Technical Guidance	to the sun shall be white or aluminum.

Table 8-2 – Fixed	Roof Storage Tank	VOC Control Findings
Tuble of a Timeu	noor btorage runn	voo oond of i manigo

All documentation provides consistent guidance for fixed roof tanks storing low vapor pressure products.

Based on the LAER review conducted, TPC is proposing LAER for EPNs T-81, T-82, and T-86 as fixed roof tanks painted white with submerged fill for all tanks containing material with a VOC partial vapor pressure of less than 0.1 psi.

8.1.3. Internal Floating Roof Storage Tank (EPN TK-2D6, T-115)

Tank TK-2D6 will have operational flexibility to store MTBE, DIB, IC8, or ETBE; and tank T-115 will store MTBE, IC8, or ETBE; all having vapor pressures greater than 0.1 psia. Table 8-3 below summarizes control measures identified during the LAER analysis for the storage of materials greater than 0.1 psia in vapor pressure.

Source	Description
EPA RBLC	Internal floating roof with mechanical shoe primary seal and a rim mounted secondary seal. Deck is welded with gaskets on all deck appurtenances.
CA Clearinghouse	No entries identified
BAAQMD Guidance	Achieved in Practice: Approved roof w/liquid mounted primary seal and zero gap secondary seal. Also, no ungasketed roof penetrations, no slotted pipe guide pole unless equipped with float and wiper seals, and no adjustable roof legs unless fitted w/ vapor seal boots or equivalent
SCAQMD Guidance	Floating roof with primary/secondary seals.
TCEQ Tier I BACT/ Technical Guidance	Internal floating roof tank with primary seal mechanical/liquid or primary seal vapor mounted with secondary seal rim mounted.

Table 8-3 - Internal Floating Roof Storage Tank VOC Control Findings

For materials with a vapor pressure of greater than 0.5 psia, TPC proposes LAER as an internal floating roof tank with a vapor mounted primary seal and a secondary seal rim mounted.

8.1.4. Cooling Tower (EPN F-CT-10)

VOC emissions from the cooling tower will result through non-contact liquid drift of the cooling water which contains some VOC from the process.

To identify potential VOC control technologies for the cooling towers, TPC reviewed the information listed in Table 8-4.

Source	Description	
EPA RBLC	Indirect design. 42 ppbw leak action level.	
CA Clearinghouse	No entries identified	
BAAQMD Guidance	0.042 ppmw leak action level. Weekly monitoring.	
SCAQMD Guidance	No entries identified	
TCEO Tion I DACT /	Non-contact design. Monthly VOC monitoring. Repair identified leaks	
TCEQ Tier I BACT/ Technical Guidance	as soon as possible, but before next scheduled shutdown, or	
recinical Guidance	shutdown triggered by 0.08 ppmw cooling water VOC concentration.	

Table 8-4 - Cooling Tower VOC Control Findings

Review of the resources for the control of cooling tower VOC emissions identified the monitoring of the VOC content in the cooling water weekly combined with repair of leaking heat exchangers as the most stringent method of VOC control.

Based on the LAER review conducted, TPC is proposing LAER as being consistent with BAAQMD Regulation 11 Rule 10's guidance of 0.042 ppmw VOC as the leak action level before leak repairs occur. TPC's proposed LAER is more stringent than TCEQ's Tier I BACT of 0.08 ppmw.

8.1.5. Fugitives (EPN FUG-BD-V)

VOC emissions from fugitive components will result through equipment leaks from new process components in VOC service. TPC is proposing to follow TCEQ's 28LAER to satisfy LAER for equipment leak fugitives. 28LAER is the most stringent LDAR program developed by TCEQ and was established to satisfy the NNSR LAER requirements. 28LAER will be conducted on all regulated components in VOC service that are new as part of this project.

8.1.6. MSS (EPNS MSS-BD, EPN-FLR)

New equipment related to the BD expansion as described in Section 5 will result in vessel clearing MSS activities. The only new emissions associated with these sources will be once the vessels are opened to atmosphere (EPN MSS-BD), which will only occur once the vapor space of the vessels is at a VOC concentration of 500 ppmv or less.

A review of the LAER references did not return any specific BACT or LAER requirements for MSS vessel opening. Therefore, TPC proposes opening the vessel to atmosphere at or below a VOC concentration of 500 ppmv as LAER. Note that this threshold is much lower than TCEQ's Tier I BACT requirement of 10,000 ppmv for uncontrolled MSS emissions from tank cleaning.

Additionally, this project will authorize MSS emissions from the floating roof tank (EPN TK-2D6), which will require degassing for maintenance activities to be performed, represented as EPN MSS-FLR. The only BACT or LAER requirements found in the LAER review comes from the TCEQ Tier I BACT for floating roof tanks.

TPC proposes the TCEQ Tier I BACT requirements as LAER. During degassing and refilling, TPC will route vapors to a portable flare.

This section of the application presents the Best Available Control Technology analysis as required by Federal Clean Air Act and TCEQ regulatory requirements. PSD regulations require Best Available Control Technology (BACT) review for all new equipment that emit any of the pollutants that have the potential to be emitted at significant enough quantities to trigger a PSD review. Both Federal regulations under 40 CFR §52.21(j) and State regulations under 30 TAC Chapter 116 require that Best Available Control Technology (BACT) be applied to reduce or eliminate air emissions from a new or modified facility. Pursuant to 30 TAC §116.160 and 40 CFR §52.21(b) (12) PSD BACT is defined as:

"an emissions limitation (including a visible emission standard) based on the maximum degree of reduction for each pollutant subject to regulation under Act which would be emitted from any proposed major stationary source or major modification which the Administrator, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs, determines is achievable for such source or modification through application of production processes or available methods, systems, and techniques, including fuel cleaning or treatment or innovative fuel combustion techniques for control of such pollutant. (EPA 1990)"

9.1. BACT METHODOLOGY

EPA has developed a five step "top-down" process that can be used to ensure that a BACT analysis satisfies the applicable legal criteria. While the TCEQ has historically followed the three-tier process, the result from using either process should result in the same outcome. TPC has elected to use the "top-down" process for its PSD BACT analysis, as provided in TCEQ document entitled "*Air Permit Reviewer Reference Guide - Air Pollution Control*" (2011) where applicable TCEQ's Tier 1 BACT guidelines are also presented. The "top-down" PSD BACT evaluation consists of the following steps:

- > Step 1 Identify All Control Options
- > Step 2 Eliminate Technically Infeasible Options
- Step 3 Rank Remaining Control Options
- > Step 4 Evaluation of Most Effective Control Option
- Step 5 Select BACT

As indicated in Section 7, the emissions of PM, PM_{10} , $PM_{2.5}$, and GHG exceed the applicable SERs (Significant Emission Rates). Therefore, PSD BACT must be determined for each emission unit at the facility that emits PM, PM_{10} , $PM_{2.5}$, or GHG. Although Section 7 addressed emissions from new and modified facilities from all three concurrent permit applications, the BACT section will address units authorized under each respective permit. Therefore, only $PM/PM_{10}/PM_{2.5}$ from cooling towers will be addressed below. Additionally. since the area is nonattainment for ozone, NO_X and VOC emissions were covered in the LAER analysis section.

9.2. PM/PM₁₀/PM_{2.5} BACT ANALYSIS

9.2.1. Cooling Tower (EPN F-CT-10)

9.2.1.1. Step 1 - Identify All Control Technologies

To identify potential $PM/PM_{10}/PM_{2.5}$ control technologies for the flares, TPC reviewed the following information:

- > EPA's RACT / BACT / LAER Clearinghouse (RBLC) (past 10 years); and
- > TCEQ's Tier I BACT.

Review of the resources identified the following as control technologies for PM control from cooling towers.

Source	Description
EPA RBLC	Drift eliminators with Drift rates 0.0005%; 0.001%; 0.003%;
TCEQ Tier I BACT/	Drift < 0.001% achieved by drift eliminators
Technical Guidance	

Table 9-1 – Cooling Tower PM/PM₁₀/PM_{2.5} Control Findings

9.2.1.1. Step 2 - Eliminate Technologically Infeasible Options

The use of drift eliminators is considered technically feasible, so no options are eliminated.

9.2.1.2. Step 3 - Rank Remaining Control Technologies

The only feasible control measure is the use of drift eliminators. Therefore, ranking is not required.

9.2.1.3. Step 4 - Evaluate Most Effective Controls

Since drift eliminators are the only control option listed, cost analysis is not required.

9.2.1.4. Step 5 - Select BACT

TPC is proposing to install drift eliminators and limit drift from the cooling towers to 0.0005% drift rate. The proposed drift rate is more stringent than TCEQ's Tier I BACT of 0.001%.

9.3. GHG BACT ANALYSIS

The potential emissions for GHG from the proposed project, expressed as CO_2e , will be greater than 75,000 tons which triggers PSD BACT review as described in EPA's Greenhouse Gas Tailoring Rule and subsequent case law (See *UARG v. EPA*, L.Ed. 2d 372 (2014)). Pursuant to EPA regulation, the project is subject to a GHG BACT review which is included below for GHG pollutants from each of the proposed sources.

In addition to the control options identified in each of the sections below, TPC also considered carbon capture and sequestration (CCS) as a potential GHG control option. CCS includes CO₂ capture and/or compression transport, and storage. However, this technology is appropriate for natural gas processing, ammonia production, and power generation industries where streams with a high CO₂ concentration exist. Additionally,

transportation and storage of the CO_2 is not technically available for the proposed sources. For these reasons, CCS is not a technically feasible control option for the proposed sources and is not discussed in the following sections.

9.3.1. Flare (EPN MSS-FLR)

GHG emissions from the MSS flare are produced from the combustion of carbon-containing VOCs. Since the flare itself is a control device for VOC emissions, additional controls are not practicable. Potential GHG control options for the flares are analyzed in the following sections.

9.3.1.1. Step 1 - Identify All Control Technologies

To identify potential GHG control technologies for the flare, TPC reviewed the following information:

- > EPA's RACT / BACT / LAER Clearinghouse (RBLC) (past 10 years); and
- > General GHG Permitting Guidance.

The table below summarizes generally accepted methods for minimizing GHG emissions from flares.

Control Option	Description
Low Carbon Fuel Selection	The pilot gas fuel for the flares will be limited to natural gas fuel. Natural gas has the lowest carbon intensity of any available fuel.
Good Combustion, Operating, Maintenance Practices	The flares will be operated in compliance with the manufacturer recommendations.

Table 9-1. Potential GHG Control Technologies for Flares

9.3.1.2. Step 2 - Eliminate Technologically Infeasible Options

The identified control options are technically feasible for the proposed flares.

9.3.1.3. Step 3 - Rank Remaining Control Technologies

No ranking of the control technologies is required since TPC will implement all of the control technologies identified.

9.3.1.4. Step 4 - Evaluate Most Effective Controls

This step is not required since all of the control technologies identified are being proposed as BACT for GHG from the flares.

9.3.1.5. Step 5 - Select BACT

TPC proposes the following as BACT for GHG from the flares:

- > Use of natural gas in the flare pilots
- > Following good combustion, operating, and maintenance practices.

TPC proposes the use of these work practice standards as the BACT limit for the flares.

9.4. STATE ONLY BACT ANALYSIS

9.4.1. Wastewater (EPNS WW-PN, EPN F-10A)

The Houston Plant performed a reassessment of its wastewater treatment plant resulting in an increase in its maximum allowable emission rates for the aerations ponds/clarifiers (EPN WW-PN) and the oil-water separator (EPN F-10A). As discussed in the pre-application meeting with the TCEQ, the increase in emissions is not related to this project and is not due to any physical or operational change and is therefore not a modification subject to nonattainment control requirements. TPC will therefore meet the TCEQ state BACT requirements.

TCEQ Tier I BACT for wastewater facilities is shown in Table 9-2. TPC's current wastewater system meets all of the specified requirements.

Source	Description
	Applicable for organics and inorganics.
TCEQ Tier I BACT/ Technical Guidance	Uncontrolled site-wide wastewater emissions > 5 tpy VOC: stripped gases from pretreatment routed to a control device, collection system hard piped/covered conveyance to biological treatment unit vented to a control device, wastewater treatment system must be at least 90 percent efficient.

Table 9-2 - Wastewater VOC BACT

10.1. MODELING ANALYSIS

An air quality analysis has been performed in support of this permit amendment application to demonstrate compliance with all applicable air quality standards using an appropriate air dispersion model. The main purpose of this analysis is to demonstrate that the emission points at the Houston Plant, in conjunction with other applicable emissions from existing sources, will not cause or contribute to a violation of any applicable National Ambient Air Quality Standards (NAAQS) or PSD Increment. Significance modeling of the emission rates from the new/modified emission points indicate that impacts from PM_{10} and $PM_{2.5}$ are below the Significance Impact Levels (SILs) for PSD modeling and the impacts for CO, NO_x and SO_2 are below the SILs for state NAAQS analysis. A Modeling and Effects Review Applicability (MERA) evaluation is also been conducted for all air toxics to demonstrate that the proposed project is not expected to adversely affect human health and welfare. A modeling protocol is included as part of this application. The modeling report will be submitted pending approval of the protocol and will be submittal under separate cover. Pursuant to EPA guidance, modeling is not required for GHGs.

10.2. ANALYSIS OF CLASS I AREA IMPACTS

Emissions from the project of NSR-regulated pollutants will have no impact on the nearest Class I area, Big Bend National Park, which is located approximately 900 km from the site.

10.3. ADDITIONAL IMPACTS ANALYSIS

PSD regulations require that three additional impact analyses be performed as part of a PSD permit action -- a visibility analysis, a soil and vegetation analysis, and a growth analysis. Issues concerning impacts on vegetation, soils, and growth due to the proposed modification are addressed below.

1. *Impairment to visibility, soils, and vegetation*. "The owner or operator shall provide an analysis of the impairment to visibility, soils and vegetation that would occur as a result of the source or modification and general commercial, residential, industrial and other growth associated with the source or modification. The owner or operator need not provide an analysis of the impact on vegetation having no significant commercial or recreational value." 40 C.F.R. § 52.21(o)(1).

All construction and operation associated with the proposed project will be within the existing facility and will not impact soils or vegetation having any commercial or recreational value. The overall outline of the facility will not change significantly. The emission impacts will be below the respective Significant Impact Level for all criteria pollutants for which there is an increase in allowable emissions due to this project. As such, there is no impact to visibility, soils, or vegetation from this project.

2. *Growth analysis.* "The owner or operator shall provide an analysis of the air quality impact projected for the area as a result of general commercial, residential, industrial and other growth associated with the source or modification." 40 C.F.R. § 52.21(o)(2).

The TPC Houston Plant is an existing facility; therefore, the activities associated with this permitting action are not expected to cause a significant shift of population or an increase in industrial, commercial, and residential growth in the area. Since no significant associated commercial, industrial, or residential growth is expected as a result of this permitting action, negligible growth-related ambient air impacts are expected.

3. *Visibility monitoring*. "The Administrator may require monitoring of visibility in any Federal class I area near the proposed new stationary source for major modification for such purposes and by such means as the Administrator deems necessary and appropriate." 40 C.F.R. § 52.21(o)(3).

Visibility monitoring is not required for this project because emissions from the project of NSR-regulated pollutants relevant to a visibility analysis will have no impact on the nearest Class I area, Big Bend National Park, which is located approximately 900 km from the site.

11.1. NNSR COMPLIANCE REVIEW

Title 30 TAC § 116.150(d)(2) specifies that all major stationary sources within the state of Texas are in compliance or on a schedule for compliance with all applicable state and federal emission limitations and standards for an NNSR permit to be issued. All Texas facilities owned and operated by TPC meet the compliance review requirements. The signature on the PI-1 form satisfies this compliance certification.

11.2. NNSR OFFSETS

Table 7-1 in Section 7 demonstrates that NNSR is triggered for VOC. 30 TAC § 116.150(d) specifies that project emissions increases (PEI) should be offset with reductions at a ratio of 1.20 to 1. Offsets will be established based on either internal projects, purchasing credits, or a combination thereof.

11.3. ALTERNATIVE SITE ANALYSIS

30 TAC § 116.150(d)(4) specifies that nonattainment permit applications "must contain an analysis of alternative sites, sizes, production processes, and control techniques for the proposed source. The analysis must demonstrate that the benefits of the proposed location and source configuration significantly outweigh the environmental and social costs of that location." The proposed project will generate new jobs and generate additional income in the area. Existing infrastructure at the site will minimize the environmental impacts as compared to building a new facility in another area. Therefore, the benefits of the proposed project significantly outweigh the environmental and social costs associated with its location. TCEQ Table 6N, Alternate Site Analysis for Texas Nonattainment New Source Review and Table 9N Signature Verification, are attached in Appendix B. Additionally, as required by Table 9N, Table 4N Initial Lowest Achievable Emission Rate (LAER) Determination is included in Appendix B.

According to the instructions for filing a Form PI-1 General Application, the permit application must address the General Application requirements, as specified in 30 TAC §116.111. The requirements are listed and addressed in this section.

§116.111. General Application.

In order to be granted a permit, amendment, or special permit amendment, the application must include:

(1) a completed Form PI-1 General Application signed by an authorized representative of the applicant. All additional support information specified on the form must be provided before the application is complete;

A signed Form PI-1 is included in Section 2 of this application. Additional supporting information, as specified on the application form, is included in various other sections of this application.

(2) information which demonstrates that all of the following are met.
(2)(A) Protection of public health and welfare.
(2)(A)(i) The emissions from the proposed facility will comply with all rules and regulations of the commission and with the intent of the TCAA, including protection of the health and physical property of the people.

Operations at TPC are consistent with the goal of protecting the public health, welfare, and physical property of the people. This is demonstrated by the facility's compliance with all applicable air quality rules in the Texas Administrative Code, as outlined below.

Chapter 101 – General Rules:

TPC will be operated in accordance with all applicable requirements in Chapter 101. Specifically, TPC will be operated in accordance with the Chapter 101 General Rules relating to circumvention, nuisance, traffic hazard, notification and recordkeeping requirements for emission events and for startup/shutdown/maintenance, sampling and sampling port procedures, emissions inventory requirements, compliance with Environmental Protection Agency Standards, the National Primary and Secondary Ambient Air Quality Standards, inspection fees, emissions fees, and all other applicable General Rules.

Chapter 111 – Control of Air Pollution from Visible Emissions and Particulate Matter: TPC will comply with all applicable requirements in Chapter 111, including the allowable visible emission requirements in 30 TAC §111.111 and the particulate matter (PM) emission rate specified in 30 TAC §111.151. Also, TPC will comply with the outdoor burning restrictions in 30 TAC §111.201.

Chapter 112 – Control of Air Pollution from Sulfur Compounds:

The proposed facility will comply with all applicable emission limitations, allowable emission rates, monitoring, reporting, and recordkeeping requirements of 30 TAC Chapter 112. The sulfuric acid net ground level in 30 TAC § 112.41(b) does not apply to the proposed project because the Houston Plant is not a sulfuric acid facility or oleum facility. Furthermore, the Houston Plant is not a Kraft Pulp Mill therefore the requirements of 30 TAC Chapter 112 Subchapter D do not apply.

Chapter 113 – Control of Air Pollution from Toxic Materials:

Chapter 113 regulates the emission of radionuclides (40 CFR Part 61, Subpart R), municipal solid waste landfills, hospital/medical/infectious waste incinerators, and hazardous air pollutants for source categories (40 CFR Part 63). There will be no emissions of radionuclides. The Houston Plant is not a

municipal solid waste landfill and does not have a hospital/medical/infectious waste incinerator. Therefore, these sections of the regulation do not apply.

Chapter 114 – Control of Air Pollution from Motor Vehicles:

The proposed sources requested to be authorized by TPC in this application are not subject to any of the requirements of Chapter 114. However, all motor vehicles owned or operated by TPC will comply with the applicable provisions of this regulation.

Chapter 115 – Control of Air Pollution from Volatile Organic Compounds (VOC):

The Houston Plant is located in Harris County, which is a county or area regulated under Chapter 115. Therefore, TPC will comply with the applicable provisions of this regulation.

Chapter 117 – Control of Air Pollution from Nitrogen Compounds:

The Houston Plant is located in Harris County, which is a county or area regulated under Chapter 117. Therefore, TPC will comply with the applicable provisions of this regulation.

Chapter 118 – Control of Air Pollution Episodes:

The Houston Plant is located in Harris County, which is a designated county under 30 TAC §118.5; therefore, TPC will comply with the applicable provisions of this regulation.

Chapter 122 – Federal Operating Permits:

The Houston Plant is a major source of regulated pollutants as defined in 30 TAC Chapter 122. TPC will update federal operating permit (FOP) 01598 to meet the requirements as defined in 30 TAC Chapter 122.

(2)(A)(ii) For issuance of a permit for construction or modification of any facility within 3,000 feet of an elementary, junior high/middle, or senior high school, the commission shall consider any possible adverse short-term or long-term side effects that an air contaminant or nuisance odor from the facility may have on the individuals attending the school(s).

There are schools located within 3,000 feet of the facility. The emissions associated with the facility will comply with all applicable air quality rules and regulations and with the intent of the TCAA, including protection of the health and the physical property of the people.

(2)(B) Measurement of emissions. The proposed facility will have provisions for measuring the emission of significant air contaminants as determined by the executive director. This may include the installation of sampling ports on exhaust stacks and construction of sampling platforms in accordance with guidelines in the "Texas Natural Resource Conservation Commission (TNRCC) Sampling Procedures Manual."

Emissions from any source addressed in the application will be sampled upon request of the Executive Director of the TCEQ, and sampling ports and sampling platforms will be installed as needed.

(2)(C) Best available control technology (BACT). The proposed facility will utilize BACT, with consideration given to the technical practicability and economic reasonableness of reducing or eliminating the emissions from the facility.

The BACT and LAER requirements are addressed in Sections 8 and 9 of this application.

(2)(D) New Source Performance Standards (NSPS). The emissions from the proposed facility will meet the requirements of any applicable NSPS as listed under Title 40 Code of Federal Regulations (CFR) Part 60, promulgated by the EPA under FCAA, §111, as amended.

TPC will comply with all applicable New Source Performance Standards (NSPS).

(2)(E) National Emission Standards for Hazardous Air Pollutants (NESHAP). The emissions from the proposed facility will meet the requirements of any applicable NESHAP, as listed under 40 CFR Part 61, promulgated by EPA under FCAA, §112, as amended.

TPC will comply with all applicable National Emission Standards for Hazardous Air Pollutants (NESHAP) Standards.

(2)(F) NESHAP for source categories. The emissions from the proposed facility will meet the requirements of any applicable maximum achievable control technology standard as listed under 40 CFR Part 63, promulgated by the EPA under FCAA, §112 or as listed under Chapter 113, Subchapter C of this title (relating to National Emissions Standards for Hazardous Air Pollutants for Source Categories (FCAA §112, 40 CFR 63)).

TPC will comply with all applicable NESHAP standards for source categories.

(2)(G) Performance demonstration. The proposed facility will achieve the performance specified in the permit application. The applicant may be required to submit additional engineering data after a permit has been issued in order to demonstrate further that the proposed facility will achieve the performance specified in the permit application. In addition, dispersion modeling, monitoring, or stack testing may be required.

TPC will achieve the performance represented in this permit application. Information submitted, as applicable, to support this demonstration has been included or will include design criteria such as process flow diagrams, material balances, emissions calculations, vendor data on pollution control equipment, control efficiencies, and/or test data from similar facilities.

(2)(H) Nonattainment review. If the proposed facility is located in a nonattainment area, it shall comply with all applicable requirements in this chapter concerning nonattainment review.

The Houston Plant is located in Harris County, which is nonattainment for ozone and attainment for all other FNSR pollutants. The Houston Plant is considered a major source under the NNSR program (for NO_X and VOC). Accordingly for this project, the Houston Plant is subject to the relevant Chapter 116 requirements that require NNSR analyses for NO_X and VOC. A detailed examination of NNSR applicability for the proposed project is provided in Section 7.

(2)(I) Prevention of Significant Deterioration (PSD) review. If the proposed facility is located in an attainment area, it shall comply with all applicable requirements in this chapter concerning PSD review.

The Houston Plant is considered a major source under both the NNSR program (for NO_X and VOC) and PSD program (for other FNSR pollutants). Accordingly for this project, the Houston Plant is subject to the relevant Chapter 116 requirements that require PSD analyses for CO, SO₂, PM, PM₁₀, and PM_{2.5}. A detailed examination of PSD applicability for the proposed project is provided in Section 7.

(2)(J) Air dispersion modeling. Computerized air dispersion modeling may be required by the executive director to determine air quality impacts from a proposed new facility or source modification.

TPC will provide air dispersion modeling analysis under a separate cover as part of this permit amendment application.

(2)(K) Hazardous air pollutants. Affected sources (as defined in §116.15(1) of this title (relating to Section 112(g) Definitions)) for hazardous air pollutants shall comply with all applicable requirements under Subchapter C of this chapter (relating to Hazardous Air Pollutants: Regulations Governing Constructed or Reconstructed Major Sources (FCAA, §112(g), 40 CFR Part 63)).

This regulation does not apply because the represented emissions do not constitute construction or reconstruction of a major new source of Hazardous Air Pollutants as defined in the Federal Clean Air Act (FCAA) §112(b).

(2)(L) Mass cap and trade allowances: If subject to Chapter 101, Subchapter H, Division 3, of this title (relating to Mass Emissions Cap and Trade Program), the proposed facility, group of facilities, or account must obtain allowances to operate.

This facility is subject to the mass cap and trading program of 30 TAC Chapter 101, Subchapter H, Division 3. TPC will comply with the Mass Emissions Cap and Trade (MECT) program requirements.

Pursuant to Title 30 of the Texas Administrative Code (30 TAC) Section (§)116.141, the permit fee for a construction permit application is based on the capital cost of the proposed project. The permit fee is determined as 1.0% of the capital cost (for PSD Permit Applications) of the proposed project with a minimum fee of \$900 and a maximum fee of \$75,000.

The associated capital costs with this project are estimated to be greater than \$7.5 million; therefore, the maximum fee of \$75,000 will be paid. A summary of project fees is included in the Form PI-1 General Application. Additionally, TPC is requesting to expedite the permit amendment application process; therefore, the APD-EXP form is included at the end of this section. Since the application is a Federal NSR permit, an expedited permitting fee of \$20,000 will be paid, with a copy of the surcharge payment form (APD-APS) enclosed with this submittal, Accordingly, TPC has submitted two checks totaling \$95,000 (permit fee plus the expedited fee) to the TCEQ Revenue Section under separate cover. A copy of these checks is included in this section for reference purposes only.

Since the capital cost of the project will be more than \$2,000,000, a Professional Engineer (P.E.) review has been conducted on the emission estimates and BACT analysis. The P.E. seal is included at the end of this section.

I directly supervised the engineering work products contained in the Emissions Calculations (Section 6, Appendix A) and the LAER/BACT (Sections 8 and 9, respectively).

To the best of my knowledge, the representations made in this document are true and accurate. By affixing my seal below, I submit that the engineering work and calculations performed in the above listed sections were either performed by myself or under my direct supervision, as defined in Section 131.18 of the Texas Engineering Practice Act and incompliance with Title 30 of the Texas Administrative Code, Chapter 116, Section 16.110(f).

Date Signature

Adam Mielnicki

Managing Consultant

Trinity Consultants, Inc. Firm ID 5764

Name

Title

Affiliation

TPC Group LLC | NNSR/PSD Permit Application Trinity Consultants

Texas Commission on Environmental Quality Form APD-APS Air Permitting Surcharge Payment

I. Contact Information
Company or Other Legal Customer Name: TPC Group LLC
Customer Reference Number (CN): CN603624289
Regulated Entity Number (RN): RN100219526
Company Official or Technical Contact Information:
(Mr. Mrs. Ms. Other:)
Name: Jason Sanders
Title: EHSS Environmental Manager
Mailing Address: 8600 Park Place Blvd
City: Houston
State: TX
ZIP Code: 77017
Telephone Number: 713-475-7409
E-mail Address: Jason.Sanders2@tpcgrp.com
II. Project Information
Facility Name: Houston Plant
Permit Number: 46307
Project Number:
III. Surcharge Payment
Project Type: Federal NSR
Fee Amount: \$20,000
Check, Money Order, Transaction Number, and/or ePay Voucher Number: (below)
89975
Paid Online:
Company Name on Check: TPC Group LLC

Form APD-EXP Expedited Permitting Request

I. Contact Information
Company or Other Legal Customer Name: TPC Group LLC
Customer Reference Number (CN): CN603624289
Regulated Entity Number (RN): RN100219526
Company Official or Technical Contact Name: Mr. Michael Bankston
Phone Number: 713-475-7709
Email: michael.bankston@tpcgrp.com
II. Project Information
Facility Type: Petrochemical Manufacturing Facility
Permit Number: 46307
Project Number:
III. Economic Justification
The purpose of the application associated with this request to expedite will benefit the economy of this state or an area of this state.
IV. Delinquent Fees and Penalties
Applications will not be expedited if any delinquent fees and/or penalties are owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ. For more information regarding Delinquent Fees and Penalties, go to the TCEQ Web site at: www.tceq.texas.gov/agency/delin/index.html .
V. Signature
The signature below confirms that I have knowledge of the facts included in this application and that these facts are true and correct to the best of my knowledge and belief. As the applicant, I commit to fulfilling all expectations of the expedited permitting program and application requirements promptly. Failure to meet any expectation or requirement may cause my application to be removed from the expedited permitting program and possibly voided at the discretion of the TCEQ Executive Director. The signature further signifies awareness that intentionally or knowingly making or causing to be made false material statements or representations in the application is a criminal offense subject to criminal penalties.
Name:
Signature:
Date:

Reset Form

Vendor No.: 911

Check Date: 25-FEB-2020

Vendor Name: TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INVOICE NO.	INVOICE DATE	DESCRIPTION	DISCOUNT AMOUNT	NET AMOUNT
CHECK REQUEST 02.13.20	13-FEB-2020	URGENT CHECK REQUEST: HNO PE	0.00	75,000.00
			0.00	75,000.00

Bank of America

Chicago, Illinois 60603

PLEASE DETACH AND RETAIN THIS STATEMENT AS YOUR RECORD OF PAYMENT. Thank You

DATE	CHECK NO.	AMOUNT
25-Feb-2020	89976	\$75,000.00

PAY Seventy-Five Thousand Dollars And Zero Cents*****

VOID AFTER 90 DAYS

01

70-2328 / 719 IL

AUTHORIZED SIGNATURE(S)

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY TO P.O. Box 13089 ORDER HOUSTON-AIR EMISSION OF Autin, TX 78711

Check Date: 25-FEB-2020

Vendor Name: TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

INVOICE NO.	INVOICE DATE	DESCRIPTION	DISCOUNT AMOUNT	NET AMOUNT
HECK REQUEST 02.13.20	13-FEB-2020	HNO PERMIT EXPEDITING FEES	0.00	20,000.00
			0.00	00.000.0
			0.00	20,000.0

Bank of America

Chicago, Illinois 60603

PLEASE DETACH AND RETAIN THIS STATEMENT AS YOUR RECORD OF PAYMENT. Thank You

DATE	CHECK NO.	AMOUNT
25-Feb-2020	89975	\$20,000.00

PAY Twenty Thousand Dollars And Zero Cents*****

VOID AFTER 90 DAYS

TO THE ORDER OF TEXAS COMMISSION ON ENVIRONMENTAL QUALITY P.O. Box 13088 Austin, Tx 78711-3088

-	1	. /	
(1 am	ange	zer	
00	01	- (

70-2328 / 719 IL

AUTHORIZED SIGNATURE(S)

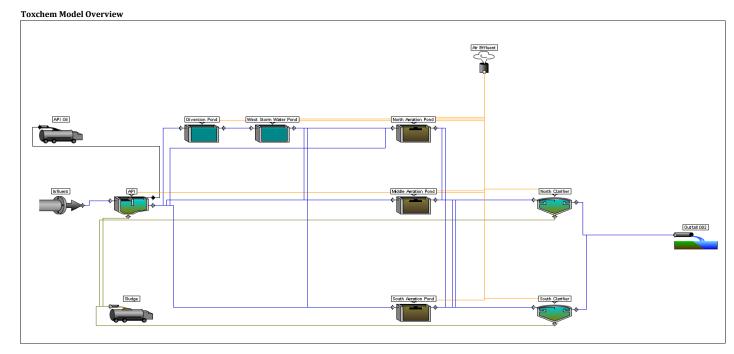
TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Wastewater Treatment Plant Wastewater Emissions Summary

EPN: WW-PN	Pern	nitted	Scena	Scenario A		Scenario B		Scenario C		ario D	Scei	iario E		
	Originally Permitted Routine Scenario (All Units are in Operation)		Routine Scenario (All Units are in Operation)		2 Ponds in Operation (NAP/SAP) and 1 Clarifier (SC) in Operation		2 Ponds in Operation (NAP/MAP) and 1 Clarifier (SC) in Operation		1 Pond in Operation (SAP) and 1 Clarifier (SC) in Operation		1 Pond in Operation (NAP) and 1 Clarifier (SC) in Operation		Maximum Emissions ³	
Chemical Compound	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Isobutylene	0.24	1.03	0.17	0.08	0.16	0.07	0.24	0.11	0.20	0.05	0.20	0.09	0.24	0.11
sobutane	0.21	0.92	0.13	0.09	0.12	0.08	0.20	0.13	0.16	0.05	0.16	0.10	0.20	0.13
Methanol	0.02	0.10	0.42	0.31	0.37	0.27	0.80	0.58	0.53	0.16	0.53	0.39	0.80	0.58
Styrene			2.13	0.46	2.05	0.44	2.45	0.53	2.29	0.38	2.29	0.49	2.45	0.53
Trimethylamine	3.80E-03	0.02	0.17	0.11	0.15	0.10	0.30	0.20	0.21	0.06	0.21	0.14	0.30	0.20
Acetone	1.06E-04	4.64E-04	0.03	0.02	0.03	0.02	0.06	0.04	0.04	9.91E-03	0.04	0.02	0.06	0.04
Ethanol	2.20E-04	9.64E-04	1.58	0.65	1.39	0.57	2.94	1.22	1.98	0.33	1.98	0.81	2.94	1.22
Butanol,tert-	2.09E-04	9.15E-04	1.76	1.04	1.54	0.91	3.22	1.92	2.19	0.53	2.19	1.29	3.22	1.92
Methyl-Tertiary-Butyl Ether	2.87E-03	0.01	0.64	0.38	0.58	0.34	0.99	0.60	0.77	0.22	0.77	0.46	0.99	0.60
Butanol,sec-	1.12E-03	4.91E-03	0.11	0.27	0.10	0.24	0.19	0.47	0.14	0.14	0.14	0.33	0.19	0.47
Furfural(1)	0.27	1.16	0.92	0.27	0.81	0.24	1.73	0.51	1.16	0.14	1.16	0.34	1.73	0.51
Butadiene-(1,3)	4.94E-03	0.02	0.19	0.06	0.17	0.06	0.27	0.09	0.22	0.04	0.22	0.07	0.27	0.09
octadiene	1.09E-03	4.77E-03	0.30	0.08	0.26	0.07	0.56	0.15	0.37	0.04	0.37	0.10	0.56	0.15
Totals	0.75	3.28	8.56	3.81	7.72	3.40	13.95	6.54	10.25	2.17	10.25	4.63	13.95	6.54
MAERT Value	0.75	3.27												
Proposed PTE	13.95	6.54												

¹Envised PTE 13.53 0.54 ¹Emissions modeled using Toxchem Version 4.4. ²NAP = North Aeration Pond, MAP = Middle Aeration Pond, SAP = South Aeration Pond, NC = North Clarifier, and SC = South Clarifier.

³ Maximum VOC emissions for WW-PN are based on Scenario C.

API Separator Emissions^{1,2}


EPN: F-10A	Ре	rmitted	Scen	ario A	Scen	ario B	Scen	ario C	Scen	ario D	Scer	iario E			
		Originally Permitted Routine Scenario (All Units are in Operation)		Routine Scenario (All Units are in Operation)		2 Ponds in Operation (NAP/SAP) and 1 Clarifier (SC) in Operation		2 Ponds in Operation (NAP/MAP) and 1 Clarifier (SC) in Operation		1 Pond in Operation (SAP) and 1 Clarifier (SC) in Operation		r 1 Pond in Operation (NAP) and 1 Clarifier (SC) in Operation		Maximum Emissions ³	
Chemical Compound	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Isobutylene	0.03	0.13	0.04	4.24E-03	0.04	4.24E-03	0.04	4.24E-03	0.04	4.24E-03	0.04	4.24E-03	0.04	4.24E-03	
Isobutane	0.03	0.12	0.03	5.69E-03	0.03	5.69E-03	0.03	5.69E-03	0.03	5.69E-03	0.03	5.69E-03	0.03	5.69E-03	
Methanol	0.10	0.44	2.10	0.49	2.10	0.49	2.10	0.49	2.10	0.49	2.10	0.49	2.10	0.49	
Styrene			0.20	0.01	0.20	0.01	0.20	0.01	0.20	0.01	0.20	0.01	0.20	0.01	
Trimethylamine	7.39E-03	0.03	0.01	2.68E-03	0.01	2.68E-03	0.01	2.68E-03	0.01	2.68E-03	0.01	2.68E-03	0.01	2.68E-03	
Acetone	1.81E-04	7.91E-04	0.07	0.01	0.07	0.01	0.07	0.01	0.07	0.01	0.07	0.01	0.07	0.01	
Ethanol	1.58E-04	6.90E-04	1.26	0.16	1.26	0.16	1.26	0.16	1.26	0.16	1.26	0.16	1.26	0.16	
Butanol,tert-	1.92E-05	8.40E-05	0.17	0.03	0.17	0.03	0.17	0.03	0.17	0.03	0.17	0.03	0.17	0.03	
Methyl-Tertiary-Butyl Ether	4.84E-04	2.12E-03	0.17	0.03	0.17	0.03	0.17	0.03	0.17	0.03	0.17	0.03	0.17	0.03	
Butanol,sec-	8.34E-05	3.65E-04	0.01	7.20E-03	0.01	7.20E-03	0.01	7.20E-03	0.01	7.20E-03	0.01	7.20E-03	0.01	7.20E-03	
Furfural(1)	0.06	0.25	0.41	0.04	0.41	0.04	0.41	0.04	0.41	0.04	0.41	0.04	0.41	0.04	
Butadiene-(1,3)	6.91E-04	3.03E-03	0.04	3.92E-03	0.04	3.92E-03	0.04	3.92E-03	0.04	3.92E-03	0.04	3.92E-03	0.04	3.92E-03	
octadiene	3.78E-04	1.66E-03	0.04	2.54E-03	0.04	2.54E-03	0.04	2.54E-03	0.04	2.54E-03	0.04	2.54E-03	0.04	2.54E-03	
Totals	0.22	0.98	4.57	0.80	4.57	0.80	4.57	0.80	4.57	0.80	4.57	0.80	4.57	0.80	
MAERT Value	0.27	1.18				•	•	•	*		•				
Proposed PTE	4.57	0.80													

Proposed PTE ¹Emissions modeled using Toxchem Version 4.4.

² NAP = North Aeration Pond, MAP = Middle Aeration Pond, SAP = South Aeration Pond, NC = North Clarifier, and SC = South Clarifier.

³ Note that VOC emissions for F-10A remain the same (regardless of operating scenario) because there is no change to the operating parameters/representations for the oil-water separator across different operating scenarios.

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Wastewater Treatment Plant Toxchem Model and Inputs

Modeled Sources - Routine Operation^{1,2}

Modeled Sources	Toxchem Unit
API Separator	API Separator
North Aeration Pond (NAP)	Activated Sludge - Mechanical Aeration
Middle Aeration Pond (MAP)	Activated Sludge - Mechanical Aeration
South Aeration Pond (SAP)	Activated Sludge - Mechanical Aeration
North Clarifier (NC)	Primary Clarifier
South Clarifier (SC)	Primary Clarifier

¹Routine wastewater sources as modeled in Toxchem. The Diversion Pond and West Storm Water Pond are not considered to be part of routine operations (used in upset events only).

² The following modeled sources are effluent streams that require no Toxchem inputs: API Oil, Sludge, Air Effluent, and Outfall 002.

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Wastewater Treatment Plant Toxchem Model and Inputs

Toxchem Unit Parameters

Parameter	Value	Unit	Comment
Liquid Depth	15.0	ft	
Surface Area	1000.0	sqft	
Weir Length	16.4	ft	
Waterfall Height	0.33	ft	
SS Removal Efficiency	0.0	%	Process Knowledge
Oil Removal Efficiency	80.0	%	Toxchem Default
Sludge SS Concentration	10000.0	mg/L	Toxchem Default
Flow Rate of Recovered Oil Stream	50.0	gpd(US)	Process Knowledge
Covered	No		

Diversion Pond										
Parameter	Value	Unit	Comment							
Liquid Depth	10.0	ft								
Surface Area	27000.0	sqft								
Covered	No									

West Storm Water Pond									
Parameter	Value	Unit	Comment						
Liquid Depth	10.0	ft							
Surface Area	59500.0	sqft							
Covered	No								

North Aeration Pond	North Aeration Pond										
Parameter	Value	Unit	Comment								
Depth	10.0	ft									
Surface Area	75600.0	sqft									
Number of CSTRs	4.0										
SRT	10.0	d	Toxchem Default								
MLSS	2000.0	mg/L	Process Knowledge								
VSS to SS Ratio	50.0	%	Process Knowledge								
Total Aerator Power	400.0	lbO2/((HP*h)	Process Knowledge								
Standard Oxygen Transfer Rate	2.9587		Toxchem Default								
Dirty/Clean Water Correction Factor	0.6	%	Toxchem Default								
Covered	No										

Parameter	Value	Unit	Comment		
Depth	10	ft			
Surface Area	75,600	sqft			
Number of CSTRs	4				
SRT	10	d	Toxchem Default		
MLSS	2000.0	mg/L	Process Knowledge		
VSS to SS Ratio	50.0	%	Process Knowledge		
Total Aerator Power	400	lbO2/((HP*h)	Process Knowledge		
Standard Oxygen Transfer Rate	2.9587		Toxchem Default		
Dirty/Clean Water Correction Factor	0.6	%	Toxchem Default		
Covered	No				

South Aeration Pond									
Parameter	Value	Unit	Comment						
Depth	15	ft							
Surface Area	60,620	sqft							
Number of CSTRs	4								
SRT	10	d	Toxchem Default						
MLSS	4000.0	mg/L	Process Knowledge						
VSS to SS Ratio	50.0	%	Process Knowledge						
Total Aerator Power	400	НР	Process Knowledge						
	2.9587	lbO2/((HP*h)	Toxchem Default						
Dirty/Clean Water Correction Factor	0.6	%	Toxchem Default						
Covered	No								

Parameter	Value	Unit	Comment
Depth	10	ft	
Surface Area	3,848	sqft	
Weir Length	51.54	ft	
Waterfall Height	0.66	ft	
Effluent SS Concentration	80	mg/L	Toxchem Default
Sludge SS Concentration	30000	mg/L	Toxchem Default
Oil Removal Efficiency	100	%	Toxchem Default
Covered	No		

South Clarifier										
Parameter	Value	Unit	Comment							
Depth	10	ft								
Surface Area	3,848	sqft								
Weir Length	10.84	ft								
Waterfall Height	0.66	ft								
Effluent SS Concentration	80	mg/L	Toxchem Default							
Sludge SS Concentration	30000	mg/L	Toxchem Default							
Oil Removal Efficiency	100	%	Toxchem Default							
Covered	No									

Site Parameters

Parameter	Value	Unit	Reference		
Elevation	25	ft	Site Knowledge		
Wind Speed - Short-Term	21.8	mph	Maximum Wind Speed in 2018		
Wind Speed - Long-Term	6.2	mph	Average Wind Speed in 2018		
Sitewide pH	8.3		Site Knowledge		

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Wastewater Treatment Plant Wastewater Operating Parameters

Parameter	Units	Proposed Hourly	Proposed Annual	Comments	
Flow Rate	gpm(US)	1400.0	1400.0	Process Knowledge	
Suspended Solids	mg/L	250.0	250.0	Process Knowledge	
VSS to SS Ratio	%	50.0	50.0	Process Knowledge	
Wastewater DOC	mg/L	0.0	0.0	Toxchem Default	
Oil/Grease Concentration	mg/L	0.0	0.0	Toxchem Default	
Temperature	deg F	99.0	70.8	Wind Speed Based on Met Data from Houston Milby Park Monitor (EPA Site: 48-201- 0069)	
Chemical Concentrations					
Isobutylene	mg/L	0.66	0.06	Process Knowledge	
Isobutane	mg/L	0.68	0.09	Process Knowledge	
Methanol	mg/L	313.67	109.62	Process Knowledge	
Acetone	mg/L	3.23	0.83	Process Knowledge	
Ethanol	mg/L	189.82	36.98	Process Knowledge	
Butanol,tert-	mg/L	85.03	23.37	Process Knowledge	
Methyl-Tertiary-Butyl Ether	mg/L	3.58	0.57	Process Knowledge	
Butanol,sec-	mg/L	1.14	1.14	Process Knowledge	
Furfural	mg/L	211.20	28.91	Process Knowledge	
Butadiene-(1,3)	mg/L	0.73	0.05	Process Knowledge	
Octadiene	mg/L	194.70	11.60	Process Knowledge	
Styrene	mg/L	4.32	0.20	Process Knowledge	
Trimethylamine	mg/L	6.60	1.15	Process Knowledge	

Proposed Wastewater Influent Stream Parameters^{1,2}

¹ The proposed hourly and annual concentrations for the individual wastewater contaminants are based on the observed maximum and average concentrations for each contaminant in 2018. A 10% "adjustment factor" has been applied to the observed maximum and average concentrations to account for variability in sample concentrations. The concentration of methanol and ethanol has been further adjusted to account for additional wastewater streams from this project which are expected to contain trace amounts of methanol and ethanol.

² The proposed maxium annual flow rate is equivalent to the proposed maximum hourly flow rate.

Proposed MLSS and VSS to SS Ratio for the North/Middle/South Aeration Ponds¹

Parameter	North Aeration Pond	Middle Aeration Pond	South Aeration Pond	
MLSS (mg/L)	2000	2000	4000	
VSS to SS Ratio	50%	50%	50%	

¹ The proposed MLSS (mg/L) and VSS to SS ratio for North, Middle, and South Aeration Ponds, modeled as "activated sludge - mechanical aeration", on both an hourly average and annual average basis.

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Hourly Fixed Roof Tank Calculations EPN T-81 / FIN T-81 EPN T-82 / FIN T-82 EPN T-86 / FIN T-86

Hourly Fixed Roof Emissions¹

FIN	EPN	Tank Type	Chemical	Maximum Liquid Bulk Temperature	, Liqu		Vapor Molecular Weight, M _v ⁴	Maximum Filling Rate (FR _M , gal/hr) Weight Fractior		Maximum Short Term Emission Rate, L _{MAX} ⁶
				(°F)	(°R)	(psia)	(lb/lb-mole)	(gal/hr)		(lb/hr)
T-81	T-81	Vertical Fixed Roof	Furfural/Water	160.00	165.90	5.23	19.83	8,400	0.024	0.41
T-82	T-82	Vertical Fixed Roof	Dimethyl Formamide	130.00	135.90	0.43	73.09	8,400	1.000	5.54
T-86	T-86	Vertical Fixed Roof	Furfural/Water	140.00	145.90	3.22	19.65	8,400	0.022	0.24

¹TCEQ Guidance Document, Estimating Short Term Emission Rates from Fixed Roof Tanks, (APDG 6250v1, Revised 02/18)

²Per AP-42 Figure 7.1-17, estimated daily maximum liquid surface temperature based on the worst-case liquid bulk temperature

³Worst-case vapor pressure at the maximum liquid surface temperature

⁴For furfural-water mixture (20:80 w/w), vapor molecular weight at the maximum liquid bulk temperature

⁵VOC vapor weight fraction at maximum liquid surface temperature

⁶Reference 1, Equation 1

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Hourly Internal Floating Roof Tank Calculations EPN TK-2D6/ FIN TK-2D6

Hourly Floating Roof Emissions¹

FIN	EPN	Tank Type	Chemical	Average Liquid Surface Temp.	Maximum Liquid Surface Temp. ²	Vapor Pressure at Average Liquid Surface Temp.	Vapor Pressure at Maximum Liquid Surface Temp.	Vapor Pressure Function, P*	Vapor Pressure Function, P* _{MAX}	Maximum Hourly Pump Rate, PR _M	Maximum Hourly Pump Rate, Q _{MAX}	Shell Clingage Factor, C _s	Liquid Density, W _L	Tank Diameter, D
				(°F)	(°R)	(psia)	(psia)			(gal/hr)	(bbl/yr)		(lb/gal)	(ft)
TK-2D6	TK-2D6	Floating Roof	MTBE	68.25	95.00	3.975	7.208	0.079	0.167	22,000	4,588,571	0.0015	6.18	75

¹TCEQ Guidance Document, Short Term Emissions from Floating Roof Storage Tanks, (APDG 6419v1, Released 02/18)

²Per TCEQ Guidance, the maximum liquid surface temperature is 95F

³Standing losses are adjusted for temperature by scaling emissions using the ratio between the vapor pressure function at the maximum liquid surface temperature and the vapor pressure function at the average liquid surface to ⁴Per TCEQ Guidance, the monthly withdrawal and standing losses are scaled and averaged to obtain total losses in (lb/hr): [L_{standing} (lb/mo) + L_{Withdrawal} (lb/mo)]*[12 mo/8760 hours]

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Hourly Internal Floating Roof Tank Calculations EPN TK-2D6/ FIN TK-2D6

Hourly Floating Roof Emissions¹

FIN	EPN	Tank Type	Chemical	Effective Column Diameter, F _c	Number of Fixed Roof Columns, N _C	Withdrawal Losses, L _{WD}	Rim Seal Losses, L _R ³	Deck Fitting Losses, L _F ³	Deck Seam Losses, L _D ³	VOC Vapor Weight Fraction	Total Losses, L _T ⁴
				(ft)	(ft)	(lb/mo)	(lb/mo)	(lb/mo)	(lb/mo)		(lb/hr)
TK-2D6	TK-2D6	Floating Roof	MTBE	0	0	44.54	202.27	143.43	0.00	1.00	0.535

¹TCEQ Guidance Document, Short Term Emissions from

²Per TCEQ Guidance, the maximum liquid surface temp

³Standing losses are adjusted for temperature by scaliremperature

⁴Per TCEQ Guidance, the monthly withdrawal and stan

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Annual Fixed Roof Tank Calculations EPN T-81/ FIN T-81

Annual Fixed-Roof Tank Emissions Constant-Level Tank

Variable Tank Identification Input Data Tank 81 T-81 FIN T-81 EPN Discharging to Location for Calculation Purposes Tank/Roof Type Underground? Diameter, ft Shell Height or Length, ft Maximum Liquid Height, ft Nominal Tank Capacity, gal Shell Paint Color Shell Paint Condition Roof Paint Color Roof Paint Color EPN Atmosphere Houston, Texas Cone Aboveground 30.0 24.0 21.0 111,053 White Good White Roof Paint Condition Throughput, gallons/year Good 315,390,520

Month	January	February	March	April	May	June	July	August	September
Type of Substance	Organic Liquid								
Tank Contents	Furfural/Water								
Throughput, gallons/month	26,282,543	26,282,543	26,282,543	26,282,543	26,282,543	26,282,543	26,282,543	26,282,543	26,282,543
Average Change in Liquid Height, ft	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Adjusted Throughput, gallons/month	5,005,659	5,005,659	5,005,659	5,005,659	5,005,659	5,005,659	5,005,659	5,005,659	5,005,659
Effective Diameter, ft	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Working Capacity, gal	111,053	111,053	111,053	111,053	111,053	111,053	111,053	111,053	111,053
Average Liquid Height, ft	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Cone Tank Roof Slope, ft/ft	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Dome Tank Roof Radius, ft									
Dome Tank Roof Height, ft									
Roof Outage, ft	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125
Vapor Space Outage, ft	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31
Vapor Space Volume, ft^3	8703	8703	8703	8703	8703	8703	8703	8703	8703
Average Daily Minimum Ambient Temperature, F	39.70	42.60	50.00	58.10	64.40	70.60	72.40	72.00	67.90
Average Daily Maximum Ambient Temperature, F	61.00	65.30	71.10	78.40	84.60	90.10	92.70	92.50	88.40
Daily Total Solar Insolation Factor, Btu/ft^2/day	843	1084	1347	1590	1784	1911	1887	1779	1546
Daily Average Ambient Temperature, F	50.4	54.0	60.6	68.3	74.5	80.4	82.6	82.3	78.2
Tank Paint Solar Absorbance, dimensionless	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170
Daily Vapor Temperature Range, F	19.4	21.5	21.6	22.2	23.0	23.1	23.6	23.2	22.1
Daily Average Liquid Surf. Temperature, F	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25
Daily Minimum Liquid Surf. Temperature, F	63.41	62.87	62.85	62.70	62.49	62.47	62.35	62.44	62.72
Daily Maximum Liquid Surf. Temperature, F	73.09	73.63	73.65	73.80	74.01	74.03	74.15	74.06	73.78
Liquid Bulk Temperature	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25
Vapor Molecular Weight, lb/lbmol	18.96	18.96	18.96	18.96	18.96	18.96	18.96	18.96	18.96
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282
Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	0.2774	0.2722	0.2720	0.2706	0.2685	0.2683	0.2672	0.2681	0.2707
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	0.3870	0.3941	0.3944	0.3964	0.3992	0.3995	0.4011	0.3998	0.3961
Vapor Density, lb/ft^3	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099
Daily Vapor Pressure range, psi	0.110	0.122	0.122	0.126	0.131	0.131	0.134	0.132	0.125
Breather Vent Pressure Setting, psig	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300
Breather Vent Vacuum Setting, psig	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300
Breather Vent Pressure Setting Range, psi	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Ambient Pressure, psia	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7
Vapor Space Expansion Factor	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Vented Vapor Saturation Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Annual Turnovers	540.89	540.89	540.89	540.89	540.89	540.89	540.89	540.89	540.89
Turnover Factor	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Working Loss Product Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Standing Storage Loss. lb/mo	9.79	9.93	11.05	11.01	11.85	11.52	12.17	11.96	10.97
Working Loss, lb/mo	164.77	164.77	164.77	164.77	164.77	164.77	164.77	164.77	164.77
Total Losses, lb/mo	2.11	2.11	2.12	2.12	2.13	2.13	2.13	2.13	2.12

¹ Based on AP-42, November 2006, Section 7.1.3.1. ² Adjusted throughput for constant-level tanks based on EPA guidance: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-chapter-7-tanks-software-frequent-questions#6

Standing Storage Loss, lb/yr	132.96
Working Loss, lb/yr	1977.27
Total Losses, lb/yr	25.46

October	November	December
Organic Liquid	Organic Liquid	Organic Liquid
Furfural/Water	Furfural/Water	Furfural/Water
26,282,543	26.282.543	26,282,543
4.00	4.00	4.00
5,005,659	5,005,659	5,005,659
30.0	30.0	30.0
111,053	111,053	111,053
12.00	12.00	12.00
0.0625	0.0625	0.0625
0.3125	0.3125	0.3125
12.31	12.31	12.31
8703	8703	8703
57.60	49.60	42.20
81.60	72.40	64.70
1330	973	791
69.6	61.0	53.5
0.170	0.170	0.170
23.6	21.0	20.0
68.25	68.25	68.3
62.35	62.99	63.3
74.15	73.51	73.2
68.25	68.25	68.25
18.96	18.96	18.96
0.3282	0.3282	0.3282
0.2672	0.2733	0.2759
0.4011	0.3926	0.3890
0.001099	0.001099	0.001099
0.134	0.119	0.113
0.0300	0.0300	0.0300
-0.0300	-0.0300	-0.0300
0.06	0.06	0.06
14.7	14.7	14.7
0.05	0.04	0.04
0.82	0.82	0.82
540.89	540.89	540.89
0.22	0.22	0.22
1.00	1.00	1.00
12.17	10.39	10.13
164.77	164.77	164.77
2.14	2.11	2.11

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Annual Fixed Roof Tank Calculations EPN T-82/ FIN T-82

Annual Fixed-Roof Tank Emissions Constant-Level Tank

Variable	Input Data
Tank Identification	Tank 82
FIN	T-82
EPN	T-82
Discharging to	Atmosphere
Location for Calculation Purposes	Houston, Texas
Tank/Roof Type	Cone
Underground?	Aboveground
Diameter, ft	30.0
Shell Height or Length, ft	24.0
Maximum Liquid Height, ft	21.0
Nominal Tank Capacity, gal	111,053
Shell Paint Color	White
Shell Paint Condition	Good
Roof Paint Color	White
Roof Paint Condition	Good
Throughput, gallons/year	520,394,358

Monthly Emissions Calculations^{1,2}

Month	January	February	March	April	May	June	July	August	September	October	November	December
Type of Substance	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid
Multiple/Single Component	Dimethyl Formamide	Dimethyl Formamide										
Throughput, gallons/month	43,366,197	43,366,197	43,366,197	43,366,197	43,366,197	43,366,197	43,366,197	43,366,197	43,366,197	43,366,197	43,366,197	43,366,197
Average Change in Liquid Height, ft	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Adjusted Throughput, gallons/month	8,259,337	8,259,337	8,259,337	8,259,337	8,259,337	8,259,337	8,259,337	8,259,337	8,259,337	8,259,337	8,259,337	8,259,337
Effective Diameter, ft	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Working Capacity, gal	111,053	111,053	111,053	111,053	111,053	111,053	111,053	111,053	111,053	111,053	111,053	111,053
Average Liquid Height, ft	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Cone Tank Roof Slope, ft/ft	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Dome Tank Roof Radius, ft												
Dome Tank Roof Height, ft												
Roof Outage, ft	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125	0.3125
Vapor Space Outage, ft	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31
Vapor Space Volume, ft^3	8703	8703	8703	8703	8703	8703	8703	8703	8703	8703	8703	8703
Average Daily Minimum Ambient Temperature, F	39.70	42.60	50.00	58.10	64.40	70.60	72.40	72.00	67.90	57.60	49.60	42.20
Average Daily Maximum Ambient Temperature, F	61.00	65.30	71.10	78.40	84.60	90.10	92.70	92.50	88.40	81.60	72.40	64.70
Daily Total Solar Insolation Factor, Btu/ft^2/day	843	1084	1347	1590	1784	1911	1887	1779	1546	1330	973	791
Daily Average Ambient Temperature, F	50.4	54.0	60.6	68.3	74.5	80.4	82.6	82.3	78.2	69.6	61.0	53.5
Tank Paint Solar Absorbance, dimensionless	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170
Daily Vapor Temperature Range, F	19.4	21.5	21.6	22.2	23.0	23.1	23.6	23.2	22.1	23.6	21.0	20.0
Daily Average Liquid Surf. Temperature, F	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.3
Daily Minimum Liquid Surf. Temperature, F	63.41	62.87	62.85	62.70	62.49	62.47	62.35	62.44	62.72	62.35	62.99	63.3
Daily Maximum Liquid Surf. Temperature, F	73.09	73.63	73.65	73.80	74.01	74.03	74.15	74.06	73.78	74.15	73.51	73.2
Liquid Bulk Temperature	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25
Vapor Molecular Weight, lb/lbmol	73.09	73.09	73.09	73.09	73.09	73.09	73.09	73.09	73.09	73.09	73.09	73.09
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia	0.0487	0.0487	0.0487	0.0487	0.0487	0.0487	0.0487	0.0487	0.0487	0.0487	0.0487	0.0487
Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	0.0405	0.0397	0.0396	0.0394	0.0391	0.0391	0.0389	0.0390	0.0394	0.0389	0.0399	0.0403
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	0.0582	0.0594	0.0594	0.0597	0.0602	0.0602	0.0605	0.0603	0.0597	0.0605	0.0591	0.0585
Vapor Density, lb/ft^3	0.000628	0.000628	0.000628	0.000628	0.000628	0.000628	0.000628	0.000628	0.000628	0.000628	0.000628	0.000628
Daily Vapor Pressure range, psi	0.018	0.020	0.020	0.020	0.021	0.021	0.022	0.021	0.020	0.022	0.019	0.018
Breather Vent Pressure Setting, psig	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Breather Vent Vacuum Setting, psig	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03
Breather Vent Pressure Setting Range, psi	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Ambient Pressure, psia	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7
Vapor Space Expansion Factor	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.03
Vented Vapor Saturation Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Annual Turnovers	892.48	892.48	892.48	892.48	892.48	892.48	892.48	892.48	892.48	892.48	892.48	892.48
Turnover Factor	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Working Loss Product Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Standing Storage Loss, lb/mo	5.54	5.63	6.27	6.25	6.73	6.54	6.91	6.79	6.22	6.91	5.89	5.74
Working Loss, lb/mo	140.06	140.06	140.06	140.06	140.06	140.06	140.06	140.06	140.06	140.06	140.06	140.06
Total Losses, lb/mo	145.61	145.70	146.33	146.31	146.79	146.61	146.97	146.85	146.29	146.98	145.96	145.80
¹ Based on AP-42 November 2006 Section 7.1.3.1					•		•		•		•	

¹Based on AP-42, November 2006, Section 7.1.3.1. ²Adjusted throughput for constant-level tanks based on EPA guidance: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-chapter-7-tanks-software-frequent-questions#6

Annual Ennissions Summary	
Standing Storage Loss, lb/yr	75.42
Working Loss, lb/yr	1680.77
Total Losses, lb/yr	1756.20

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Annual Fixed Roof Tank Calculations EPN T-86/ FIN T-86

Annual Fixed-Roof Tank Emissions Constant-Level Tank

Variable	Input Data
Tank Identification	Tank 86
FIN	T-86
EPN	T-86
Discharging to	Atmosphere
Location for Calculation Purposes	Houston, Texas
Tank/Roof Type	Cone
Underground?	Aboveground
Diameter, ft	20.0
Shell Height or Length, ft	27.0
Maximum Liquid Height, ft	24.3
Nominal Tank Capacity, gal	57,113
Shell Paint Color	White
Shell Paint Condition	Good
Roof Paint Color	White
Roof Paint Condition	Good
Throughput, gallons/year	96,920,761

Monthly Emissions Calculations^{1,2}

Month	January	February	March	April	May	June	July	August	September	October	November	December
Type of Substance	Organic Liquid											
Tank Contents	Furfural/Water											
Throughput, gallons/month	8,076,730	8,076,730	8,076,730	8,076,730	8,076,730	8,076,730	8,076,730	8,076,730	8,076,730	8,076,730	8,076,730	8,076,730
Average Change in Liquid Height, ft	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
Adjusted Throughput, gallons/month	2,991,057	2,692,243	2,692,243	2,692,243	2,692,243	2,692,243	2,692,243	2,692,243	2,692,243	2,692,243	2,692,243	2,692,243
Effective Diameter, ft	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Working Capacity, gal	57,113	57,113	57,113	57,113	57,113	57,113	57,113	57,113	57,113	57,113	57,113	57,113
Average Liquid Height, ft	13.50	13.50	13.50	13.50	13.50	13.50	13.50	13.50	13.50	13.50	13.50	13.50
Cone Tank Roof Slope, ft/ft	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
Dome Tank Roof Radius, ft												
Dome Tank Roof Height, ft												
Roof Outage, ft	0.2083	0.2083	0.2083	0.2083	0.2083	0.2083	0.2083	0.2083	0.2083	0.2083	0.2083	0.2083
Vapor Space Outage, ft	13.71	13.71	13.71	13.71	13.71	13.71	13.71	13.71	13.71	13.71	13.71	13.71
Vapor Space Volume, ft^3	4307	4307	4307	4307	4307	4307	4307	4307	4307	4307	4307	4307
Average Daily Minimum Ambient Temperature, F	39.70	42.60	50.00	58.10	64.40	70.60	72.40	72.00	67.90	57.60	49.60	42.20
Average Daily Maximum Ambient Temperature, F	61.00	65.30	71.10	78.40	84.60	90.10	92.70	92.50	88.40	81.60	72.40	64.70
Daily Total Solar Insolation Factor, Btu/ft^2/day	843	1084	1347	1590	1784	1911	1887	1779	1546	1330	973	791
Daily Average Ambient Temperature, F	50.4	54.0	60.6	68.3	74.5	80.4	82.6	82.3	78.2	69.6	61.0	53.5
Tank Paint Solar Absorbance, dimensionless	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170
Daily Vapor Temperature Range, F	19.4	21.5	21.6	22.2	23.0	23.1	23.6	23.2	22.1	23.6	21.0	20.0
Daily Average Liquid Surf. Temperature, F	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.3
Daily Minimum Liquid Surf. Temperature, F	63.41	62.87	62.85	62.70	62.49	62.47	62.35	62.44	62.72	62.35	62.99	63.3
Daily Maximum Liquid Surf. Temperature, F	73.09	73.63	73.65	73.80	74.01	74.03	74.15	74.06	73.78	74.15	73.51	73.2
Liquid Bulk Temperature	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25	68.25
Vapor Molecular Weight, lb/lbmol	18.96	18.96	18.96	18.96	18.96	18.96	18.96	18.96	18.96	18.96	18.96	18.96
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282	0.3282
Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	0.2774	0.2722	0.2720	0.2706	0.2685	0.2683	0.2672	0.2681	0.2707	0.2672	0.2733	0.2759
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	0.3870	0.3941	0.3944	0.3964	0.3992	0.3995	0.4011	0.3998	0.3961	0.4011	0.3926	0.3890
Vapor Density, lb/ft^3	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099	0.001099
Daily Vapor Pressure range, psi	0.110	0.122	0.122	0.126	0.131	0.131	0.134	0.132	0.125	0.134	0.119	0.113
Breather Vent Pressure Setting, psig	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300
Breather Vent Vacuum Setting, psig	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300	-0.0300
Breather Vent Pressure Setting Range, psi	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Ambient Pressure, psia	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7
Vapor Space Expansion Factor	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.04
Vented Vapor Saturation Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Annual Turnovers	570.90	570.90	570.90	570.90	570.90	570.90	570.90	570.90	570.90	570.90	570.90	570.90
Turnover Factor	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Working Loss Product Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Standing Storage Loss, lb/mo	4.75	4.82	5.36	5.34	5.75	5.59	5.90	5.80	5.32	5.91	5.04	4.92
Working Loss, lb/mo	97.17	87.46	87.46	87.46	87.46	87.46	87.46	87.46	87.46	87.46	87.46	87.46
Total Losses, lb/mo	1.23	1.11	1.12	1.12	1.12	1.12	1.13	1.13	1.12	1.13	1.12	1.11

¹Based on AP-42, November 2006, Section 7.1.3.1.

²Adjusted throughput for constant-level tanks based on EPA guidance: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-chapter-7-tanks-software-frequent-questions#6

Standing Storage Loss, lb/yr	64.50
Working Loss, lb/yr	1059.21
Total Losses, lb/yr	13.56

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Annual Internal Floating Roof Tank Calculations EPN TK-2D6/ FIN TK-2D6

Annual Floating Roof Tank Emissions

Variable	Input Data
Tank Identification	Tank 2D6
Location for Calculation Purposes	Houston, Texas
Tank Type - Roof Type	IFR - Self Supporting Roof
k Identification ation for Calculation Purposes k Type - Roof Type -Seal System (Primary/Secondary) :k Type (IFR Tanks Only) :k Construction (IFR w/bolted decks Only) es of Substance meter, ft (D) oughput, gallons/year ik Paint Color k Paint Color	Vapor Mounted w/ Rim
Rini-Sear System (Primary/Secondary)	Mounted Secondary
Deck Type (IFR Tanks Only)	Welded
Deck Construction (IFR w/bolted decks Only)	N/A
Type of Substance	Organic Liquid
Diameter, ft (D)	75.0
Throughput, gallons/year	130,183,200
Tank Paint Color	Aluminum - Specular
Tank Paint Condition	Good
Shell Condition	Light Rust

Monthly Emissions Calculations¹

Partner	onthly Emissions Calculations ²	January	February	March	April	May	June	July	August	September	October	
Main bernerMain <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						-						
bickerbickerbick<							MTPE					
Descriptionshold Namesian57.050.0 </td <td></td>												
Deep Anternational legionalCalib												
Decisional scaleDecisional scaleDeci												
Data base statemarkBat<												
Inductor137												
background101 <td></td> <td>_</td>												_
bit operator0.41 </td <td></td>												
bit matrix integration1.610.010.000.020.01												
MAXM		0.010	0010	0010	0010	0010	0010	0010	0000			
Jack All Alorem IAli <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
more dependencemodelmod												
The bar model of the set of												
Improve Improve Improve Improvement Improveme												_
Indem Calman1000 </td <td></td> <td>_</td>												_
ImmediateImage <td></td> <td>_</td>												_
Interview improvement improvement partnerImprovement improvement <td></td> <td></td>												
Inc.JoshJ												
memmem1.1011.1031.1031.1021.1021.1031.1		250:00		200.00					200.00	100.00		
Sher hand half shang had												
mby howemany bar howemany bar howemany bar howemany 												_
Induce data base data data (a)Init </td <td></td>												
New probaneNew probability999 <td></td>												
Name (N)10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Decomposition than then the (b_0)12							0.0	0.0				
New part on control manual matrix manufactor manu												
Induction1.41												
Index graphene, bin, instruction60015												
Number of home (h)60												
Individual Link Derivation000												
New for spannin frace (f)0.1610.1620.1620.1230.1230.1240.126 </td <td></td>												
Inter Sparstance Fabr (kg)0.150<											0.0	
<table-container>Important0.07840</table-container>												
Number diring (D)Image diring (D)Image direct (C)Image direct (C)Ima												
Acces <th< td=""><td></td><td>0.07804</td><td>0.07804</td><td>0.07804</td><td>0.07804</td><td>0.07804</td><td>0.07804</td><td>0.07804</td><td>0.07804</td><td>0.07804</td><td>0.07804</td><td>-</td></th<>		0.07804	0.07804	0.07804	0.07804	0.07804	0.07804	0.07804	0.07804	0.07804	0.07804	-
Lamata Gage Base Web Ishang Cover, Ingalaed101010101010101010Gage Mach Cole0.0 <t< td=""><td></td><td>1.0</td><td>10</td><td>10</td><td>1.0</td><td>10</td><td>1.0</td><td>1.0</td><td>10</td><td>1.0</td><td>1.0</td><td></td></t<>		1.0	10	10	1.0	10	1.0	1.0	10	1.0	1.0	
Channer Markel Prior Markel Marken Markel Marken Markel												
Sug-Math/Sample Wall (in Sum) Sink factor, (198 years and Lodew Wall (is Sum Mark Sum Ma		110	110	1.0	1.0		110	110				
Index of the function function of the standard functio												
Inim verter/Ngeland Actanitin ligenk0.0<												
Inder Denkmer)- Open0.0 <td></td>												
Isoff eq. (3-h) Dunster) Adjushle years Are, linguaked10.010.010.010.010.010.010.010.0Stated dush-Pol, Stately Wears Are, linguaked1.0										0.0		
not leg/1n Diameter) Any langelerd16.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>010</td><td></td></t<>											010	
Sinter diamely-Sinter Sinter Sinte												
Sub Dani (1-in Dani eter)0.0<												
Yacum Breaker (10-in Dian)-Weigher Mech, Anzunio, Gaski1.0 <t< td=""><td></td><td></td><td></td><td></td><td>2.0</td><td></td><td></td><td></td><td>210</td><td>110</td><td></td><td></td></t<>					2.0				210	110		
network bases basesletterletterletterletterletterletterletterletterletterbases bases bases1.60 <td></td>												
Incressible harmschaft160160160160160160160160160Automatic Gauge harmschaft1400 </td <td></td> <td>110</td> <td>110</td> <td>1.0</td> <td>1.0</td> <td>10</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td></td>		110	110	1.0	1.0	10	1.0	1.0	1.0	1.0	1.0	
humanic Gauge Pical Weil-Unbinded Core, Ungasker14.00 <th< td=""><td></td><td>1.60</td><td>1.60</td><td>1.60</td><td>1.60</td><td>1.60</td><td>1.60</td><td>1.60</td><td>1.60</td><td>1.60</td><td>1.60</td><td></td></th<>		1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	
Colume Well (24-in Dam)-Buil-Up Col-Siding Cover, Dispark47.0047.0												
Gauge-Hatch/Sample Well (3in. Diam.)-Silicitabric seal, 10% open area12.00<												
ladder Well (3ch. Diameter)-Migling Cover, Gasketed56.00 <td></td>												
knu (c) Dimeter)-Weighted Mech.Actuation, Ungask.0.68												
Road Data in Ling1.501.												
Roof Lg (3:n. Diameter)-Adjustable, Center Area, Ungasketed 0.82												_
Roof Leg 3-In Jameter)-Adjustable, Pontoon Area, Ungasketed2.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Stated Guide-Pole/Sample Well-Ungask Sliding Cover, w/o Float 43.00												
Shit Drain (1-in, Diameter) 1.20												
Vacuum Breaker (10-in. Diam.) Weighted Mech. Actuation, Gask. 6.20 <td></td> <td></td> <td></td> <td></td> <td>15.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					15.00							
Vacuum Breaker (10:in Diam). Weighted Mech Actuation, Ungask 7.80 7.80 7.80 <td></td> <td>+</td>												+
Deck Fitting Loss Factor (KF) Image: Constraint of the constra												+
Interpretation Introde		7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Image: State		117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	+
Rin Seal Loss (lh/nonth) 95.32 95.		117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	+
Withdrawal Loss (b/month) 3.0.8 3.		05.22	05.33	05.22	05.33	05.22	05.22	05.00	05.22	05.22	05.00	
Deck Fitting Loss (Ib/month) 67.59 67.59 67.59 67.59 67.59 67.59 67.59 67.59 67.59 67.59 67.59 67.59 67.59 67.59												-+
		50:00	50:00		50.00		00100				00.000	\rightarrow
Deck Seam Loss (lb/month) 0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

ibased on AI -42, November 2000, Section 7.1

Annual Emissions Summary	
Rim Seal Loss (lb/yr)	1,143.82
Withdrawal Loss (lb/yr)	361.02
Deck Fitting Loss (lb/yr)	811.07
Deck Seam Loss (lb/vr)	0.00

November	December
Organic Liquid	Organic Liquid
MTBE	MTBE
10.731	10.731
49.60	42.20
72.40	64.70 790.95
973.38 61.0	53.5
0.390	0.390
27.0	24.8
68.3	68.3
61.5	62.0
75.0	74.5
68.3	68.3
88.15 6.18	88.15 6.18
1.00	1.00
7.08	7.08
1233.70	1233.70
238.88	238.88
3.9752	3.9752
3.3828	3.4283
4.6500	4.5916
1.267	1.163
14.7	14.7
1.0	1.0
2.2	2.2
0.003	0.003
4.3	4.3
0.0015	0.0015
0.0	0.0
0.0	0.0
0.1638 0.150	0.1499 0.150
0.150	0.07864
0.07864	0.07864
0.07864	0.07864
0.07864 1.0 1.0 0.0 1.0	0.07864 1.0 1.0 0.0 1.0
0.07864 1.0 1.0 0.0 1.0 0.0 0.0	0.07864 1.0 1.0 0.0 1.0 0.0 0.0
0.07864 1.0 1.0 1.0 0.0 0.0 0.0	0.07864 1.0 1.0 0.0 0.0 0.0
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0
0.07864 	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 10.0
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 10.0 16.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 10.0 10.0 16.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0	0.07864 1.0 1.0 1.0 0.0 0.0 0.0 0.0 10.0 16.0 1.0
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 10.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 10.0 16.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 10.0 16.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 10.0 10.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 10.0 10.0 16.0 1.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 10.0 16.0 1.0 0.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 10.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 10.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.07864 1.0 1.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0 1.0 1
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 10.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 10.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 10.0 10.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 16.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 12.00 0.68 1.50 0.68 1.50 0.82 2.00 0.68 1.50 0.82 2.00 0.68 1.50 0.82 2.00 0.68 1.50 0.82 2.00 0.68 1.50 0.82 2.00 0.68 1.50 0.82 2.00 0.68 1.50 0.82 2.00 0.68 1.50 0.82 2.00 0.68 1.50 0.82 2.00 0.43.00 1.50 0.50 0.0 1.50 0.5	0.07864 1.0 1.0 1.0 0.0 0.0 0.0 12.00 56.00 0.68 1.50 0.68 1.50 0.68 1.50 0.62 2.00 0.68 1.50 0.62 2.00 0.68 1.50 0.62 2.00 0.68 1.50 0.62 2.00 0.68 1.50 0.68 2.00 0.68 1.50 0.50 0
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.50 0.68 1.50 0.82 2.00 43.00 1.20 6.20	0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1
0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 16.0 1.0 1.0 1.0 1.0 0.0 1.60 1.0 0.0 1.50 0.68 1.50 0.82 2.00 43.00 1.20 6.20 7.80	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.50 0.68 1.50 0.82 2.00 43.00 1.20 6.20	0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 16.0 1.0 1.0 1.0 1.0 0.0 1.60 1.400 47.00 56.00 0.68 1.50 0.82 2.00 43.00 1.20 6.20 7.80	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1
0.07864 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 12.00 56.00 0.68 150 0.82 2.00 43.00 1.20 6.20 7.80 117.00 95.32 30.08	0.07864 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.
0.07864 	0.07864 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 0.68 1.50 0.68 1.50 0.82 2.00 4.3.00 1.20 6.20 7.80 117.00 95.32

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Annual Internal Floating Roof Tank Calculations EPN T-115 / FIN TT-115

Annual Floating Roof Tank Emissions

Variable	Input Data
Tank Identification	Tank 115
Location for Calculation Purposes	Houston, Texas
Tank Type - Roof Type	IFR - Self Supporting Roof
Rim-Seal System (Primary/Secondary)	Vapor Mounted w/ Rim Mounted Secondary
Deck Type (IFR Tanks Only)	Welded
Deck Construction (IFR w/bolted decks Only)	N/A
Type of Substance	Organic Liquid
Diameter, ft (D)	75.0
Throughput, gallons/year	130,183,200
Tank Paint Color	Aluminum - Specular
Tank Paint Condition	Good
Shell Condition	Light Rust

Monthly Emissions Calculations¹

Monthly Emissions Calculations ²	Ianuary	February	March	April	May	lune	July	August	September	October	T
Type of Substance	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	Organic Liquid	+
Multiple/Single Component	Isooctene	Isooctene	Isooctene	Isooctene	Isooctene	Isooctene	Isooctene	Isooctene	Isooctene	Isooctene	+
Ideal Gas Constant, psia ft3/lbmole °R (R)	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	10.731	+
Average Daily Minimum Ambient Temperature, F	39.70	42.60	50.00	58.10	64.40	70.60	72.40	72.00	67.90	57.60	-
Average Daily Maximum Ambient Temperature, F	61.00	65.30	71.10	78.40	84.60	90.10	92.70	92.50	88.40	81.60	+
Daily Total Solar Insolation Factor, Btu/ft^2/day (I)	843.30	1084.11	1347.45	1590.47	1784.01	1910.60	1887.12	1778.62	1545.74	1330.31	-
Daily Average Ambient Temperature, F	50.4	54.0	60.6	68.3	74.5	80.4	82.6	82.3	78.2	69.6	-
Tank Paint Solar Absorbance, dimensionless (α)	0.390	0.390	0.390	0.390	0.390	0.390	0.390	0.390	0.390	0.390	+
Daily Vapor Temperature Range, R	24.5	28.2	29.9	32.0	34.0	34.9	35.2	34.2	31.6	31.8	-
Daily Average Liquid Surf. Temperature, F	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	-
Daily Minimum Liquid Surf. Temperature, F	62.1	61.2	60.8	60.3	59.7	59.5	59.4	59.7	60.3	60.3	-
Daily Maximum Liquid Surf. Temperature, F	74.4	75.3	75.7	76.2	76.8	77.0	77.1	76.8	76.2	76.2	-
Liquid Bulk Temperature, F	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	-
Vapor Molecular Weight, lb/lbmol (My)	112.21	112.21	112.21	112.21	112.21	112.21	112.21	112.21	112.21	112.21	
Liquid Density, lb/gal (WL)	5.97	5.97	5.97	5.97	5.97	5.97	5.97	5.97	5.97	5.97	1
Liquid Mole Fraction	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Antoine's Coefficient A	6.91	6.91	6.91	6.91	6.91	6.91	6.91	6.91	6.91	6.91	
Antoine's Coefficient B	1333.24	1333.24	1333.24	1333.24	1333.24	1333.24	1333.24	1333.24	1333.24	1333.24	
Antoine's Coefficient C	229.06	229.06	229.06	229.06	229.06	229.06	229.06	229.06	229.06	229.06	
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia	0.7097	0.7097	0.7097	0.7097	0.7097	0.7097	0.7097	0.7097	0.7097	0.7097	
Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	0.5982	0.5831	0.5760	0.5675	0.5593	0.5558	0.5546	0.5587	0.5689	0.5682	T
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	0.8381	0.8587	0.8686	0.8806	0.8926	0.8978	0.8997	0.8935	0.8786	0.8796	T
Daily Vapor Pressure range, psi	0.240	0.276	0.293	0.313	0.333	0.342	0.345	0.335	0.310	0.311	T
Ambient Pressure, psia	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	
Average Ambient wind speed, mph (v)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Product Factor (K _c)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Zero wind speed rim seal loss factor (K _{RA})	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	
Wind speed dependent rim seal loss factor (K _{Rb})	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	
Seal related wind speed exponent (n)	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	
Shell Clingage Factor, bbl/1000 ft ² (C _S)	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	
Number of Columns (N _C)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Effective Column Diameter, ft (F _C)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Vapor Space Expansion Factor (K _E)	0.0593	0.0688	0.0733	0.0787	0.0840	0.0863	0.0871	0.0844	0.0778	0.0782	
Vented Vapor Saturation Factor (K _S)	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	0.150	
Vapor Pressure Function (P*)	0.01237	0.01237	0.01237	0.01237	0.01237	0.01237	0.01237	0.01237	0.01237	0.01237	
Number of Fittings (NF)											
Access Hatch (24-in. Diam.)-Bolted Cover, Gasketed	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Automatic Gauge Float Well-Unbolted Cover, Ungasketed	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	_
Column Well (24-in. Diam.)-Built-Up ColSliding Cover, Ungask.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_
Gauge-Hatch/Sample Well (8-in. Diam.)-Slit fabric seal, 10% open area	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	_
Ladder Well (36-in. Diam.)-Sliding Cover, Gasketed	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_
Rim Vent (6-in. Diameter)-Weighted Mech. Actuation, Ungask.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_
Roof Drain (3-in. Diameter)-Open	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_
Roof Leg (3-in. Diameter)-Adjustable, Center Area, Ungasketed	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	_
Roof Leg (3-in. Diameter)-Adjustable, Pontoon Area, Ungasketed	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	_
Slotted Guide-Pole/Sample Well-Ungask. Sliding Cover, w/o Float	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	_
Stub Drain (1-in. Diameter)-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_
Vacuum Breaker (10-in. Diam.)-Weighted Mech. Actuation, Gask.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Deck Fitting Loss Factors (Table 7.1-12)		1.40			1.40			1.10			+
Access Hatch (24-in. Diam.)-Bolted Cover, Gasketed	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	-
Automatic Gauge Float Well-Unbolted Cover, Ungasketed Column Well (24-in. Diam.)-Built-Up ColSliding Cover, Ungask.	14.00 47.00	14.00 47.00	14.00 47.00	14.00 47.00	14.00 47.00	14.00 47.00	14.00 47.00	14.00 47.00	14.00 47.00	14.00 47.00	-
Gauge-Hatch/Sample Well (8-in. Diam.)-Slit fabric seal, 10% open area			47.00	47.00	47.00	47.00	47.00		47.00		-
Ladder Well (36-in. Diam.)-Sliding Cover. Gasketed	12.00	12.00	12.00	12.00	12.00	56.00	12.00	12.00	56.00	12.00	
Rim Vent (6-in. Diameter)-Weighted Mech. Actuation, Ungask.	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	
Roof Drain (3-in. Diameter)-Weighted Mech. Actuation, Ongask.	1.50	0.68	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	
Roof Leg (3-in. Diameter)-Adjustable, Center Area, Ungasketed	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	
Roof Leg (3-in. Diameter)-Adjustable, Center Area, Ongasketed	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
Slotted Guide-Pole/Sample Well-Ungask. Sliding Cover, w/o Float	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	43.00	
Slotted Guide-Pole/Sample Well-Ungask. Sliding Cover, w/o Float	43.00	43.00	43.00	43.00	1.20	43.00	43.00	43.00	43.00	43.00	+
											1-
Vacuum Breaker (10-in. Diam.)-Weighted Mech. Actuation, Gask.	6.20	6.20 7.80	+								
Vacuum Preaker (10 in Diam) Weighted Mach Actuation Unread-		/.00	/.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	+
Vacuum Breaker (10-in. Diam.)-Weighted Mech. Actuation, Ungask.	7.80					1	1		1	1	1
Deck Fitting Loss Factor (KF)		117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	
Deck Fitting Loss Factor (KF) Total Deck Fitting Loss Factor, lb-mole/yr (F _F)	117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	117.00	-
Deck Fitting Loss Factor (KF) Total Deck Fitting Loss Factor, lb-mole/yr (F _F) Total Monthly Losses	117.00										
Deck Fitting Loss Factor (KF) Total Deck Fitting Loss Factor, lb-mole/yr (F _F) Total Monthy Losses Rim Seal Loss (lb/month)	117.00	19.08	19.08	19.08	19.08	19.08	19.08	19.08	19.08	19.08	
Deck Fitting Loss Factor (KF) Total Deck Fitting Loss Factor, lb-mole/yr (F _P) Total Monthly Losses Rim Seal Loss (lb/month) Withdrawal Loss (lb/month)	117.00 19.08 29.07	19.08 29.07									
Deck Fitting Loss Factor (KF) Total Deck Fitting Loss Factor, lb-mole/yr (F _F) Total Monthy Losses Rim Seal Loss (lb/month)	117.00	19.08	19.08	19.08	19.08	19.08	19.08	19.08	19.08	19.08	

Rim Seal Loss (lb/yr)	229.00
Withdrawal Loss (lb/yr)	348.82
Deck Fitting Loss (lb/yr)	162.38
Deck Seam Loss (lb/yr)	0.00

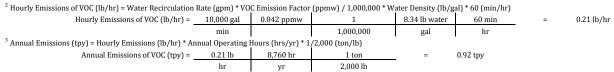
November	December
Organic Liquid	Organic Liquid
Isooctene	Isooctene
10.731 49.60	10.731 42.20
72.40	64.70
973.38	790.95
	53.5
61.0 0.390	0.390
27.0	24.8
68.3	68.3
61.5	62.0
75.0	74.5
68.3	68.3
112.21	112.21
5.97	5.97
1.00	1.00
6.91	6.91
1333.24	1333.24
229.06	229.06
0.7097	0.7097
0.7097	0.7097
0.8522	0.5970
	0.243
0.264 14.7	0.243
0.0	0.0
1.0	1.0 2.2
2.2 0.003	
	0.003 4.3
4.3	
0.0015	0.0015
0.0	0.0 0.0
0.0	
0.0658	0.0601
0.150 0.01237	0.150 0.01237
0.01237	0.01237
1.0	1.0
1.0	1.0
1.0	1.0
0.0	0.0
1.0	1.0
0.0	0.0
0.0	0.0
0.0	0.0
10.0	10.0
16.0	16.0
1.0	1.0
0.0	0.0
1.0	1.0
4 **	
1.60	1.60
14.00	14.00
47.00	47.00
12.00	12.00
56.00	56.00
0.68	0.68
1.50 0.82	1.50 0.82
2.00	2.00
43.00	43.00
1.20	1.20
6.20 7.80	6.20 7.80
/.80	/.dU
117.00	117.00
117.00	117.00
10.00	10.00
19.08 29.07	19.08 29.07
29.07 13.53	
0.00	13.53 0.00
0.00	0.00

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Cooling Tower Emissions Calculations EPN F-CT-10 / FIN F-CT-10

Input Parameters

Parameter	Value	Units
Water Recirculation Rate	10,000	gpm
Operating Hours per Year	8,760	hrs/yr
Drift Rate ¹	0.0005	%
TDS ²	1400	ppmw
VOC Emission Factor ³	0.042	ppmw

¹ Total liquid drift rate based on Best Available Control Technology (BACT)


 $^{\rm 2}$ Maximum TDS value based on AP-42 CH13.4 Table 13.4-1

³ VOC Emission Factor based on Lowest Achievable Emission Rate (LAER)

Hourly and Annual Emissions

Hourly Emissions (lb/hr)				Annual Emissio	ons (tpy) ³		
PM ¹	PM ₁₀ ¹	PM _{2.5} ¹	VOC ²	PM	PM ₁₀	PM _{2.5}	VOC
0.04	0.03	7.82E-05	0.21	0.15	0.11	3.42E-04	0.92

¹ Maximum hourly emissions calculated for the TDS value given above. Detailed calculations provided in the tables below.

Particle Size Distribution of PM Emissions from Cooling Towers

Particle Size Distribution Based on TDS¹

TDS (ppm):	1,400	
	Particle	EPRI %
EPRI Droplet	Diameter	Mass
Diameter (µm) ¹	(μm) ²	Smaller ¹
10	0.86	0.000
20	1.72	0.196
30	2.58	0.226
40	3.44	0.514
50	4.30	1.816
60	5.16	5.702
70	6.02	21.348
90	7.74	49.812
110	9.46	70.509
130	11.18	82.023
150	12.90	88.012
180	15.48	91.032
210	18.06	92.468
240	20.64	94.091
270	23.22	94.689
300	25.80	96.288
350	30.10	97.011
400	34.41	98.340
450	38.71	99.071
500	43.01	99.071
600	51.61	100.000

¹ Particle size distribution calculated based on emission calculations outlined in Reisman, J. and G. Frisbie "Calculating Realistic PM₁₀ Emissions from Cooling Towers", Greystone Environmental Consultants, Inc., 650 University Avenue, Suite 100, Sacramento, CA 95825. The EPRI Droplet Diameter and the EPRI % Mass Smaller are obtained from Table 1 of this reference.

² Solid particle diameter is based on the reference cited above and is calculated from EPRI droplet diameter assuming that each water droplet evaporates shortly after being emitted into a single, solid, spherical particle using the equation below.

 $D_p = D_d [(TDS) \left(\frac{\rho_w}{\rho_{TDS}} \right)]^{1/3}$

(p_{TDS}) Where

TDS is in units of ppmw D_p = diameter of solid particle (μm)

 D_{id} = diameter of drift droplet (μm)

Other assumptions include:

 $\rho_{droplet}$ 1 g/cm³ ρ_{solid} 2.2 g/cm³

PM 10/PM 2.5	Percents	Calculation
--------------	----------	-------------

X1 =	1.72	Y1 =	0.196
Desired Diam X2 =	2.50	Y2 =	0.223
X3 =	2.58	Y3 =	0.226
X1 =	9.46	Y1 =	70.51
Desired Diam X2 =	10.00	Y2 =	74.11
X3 =	11.18	Y3 =	82.02

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Cooling Tower Emissions Calculations EPN F-CT-10 / FIN F-CT-10

Particle Size Distribution and Emission Rates for $\ensuremath{\mathsf{PM}_{10}}\xspace$ and $\ensuremath{\mathsf{PM}_{2.5}}\xspace$

	Solid	% of	Solid Particle				
	Particle	Particles	Diameter	% of Particles			
	Diameter	where	used for	where			
	used for	diameter	PM _{2.5} ¹	diameter	Hourly Emis	sion Rate (lb/h	r) ^{2,3,4}
TDS (ppm)	PM ₁₀ ¹	= 10 µm ¹	(μm)	= 2.5 µm ¹	PM	PM ₁₀	PM _{2.5}
1,400	10.00	74.11	2.50	0.22	0.04	0.03	7.82E-05

¹ Based on methodology outlined in Reisman, J. and G. Frisbie "Calculating Realistic PM₁₀ Emissions from Cooling Towers", Greystone Environmental Consultants, Inc., 650 University Avenue, Suite 100, Sacramento, CA 95825.

² Hourly Emissions of PM (lb/hr) = Water Circulation Rate	e (gpm) * Drift R	ate (%) / 100 x TI	OS (ppmw) * 8.34 (lb wate	er/gal) * 60 (min/	hr)					
Hourly Emissions of PM (lb/hr)	10,000 gal	0.0005	1,400 parts solids	8.34 lb water	60 min	=	0.04 lb/hr			
=	min	100	1,000,000 part water	gal	hr					
³ Hourly Emissions of PM ₁₀ (lb/hr) = Hourly Emissions of	PM (lb/hr) * PM	10 Portion of PM (%) / 100							
Hourly Emissions of PM ₁₀	0.04 lb	74.11	=	0.03 lb/hr						
(lb/hr) =	hr	100								
⁴ Hourly Emissions of PM _{2.5} (lb/hr) = Hourly Emissions of	PM (lb/hr) * PM	1 _{2.5} Portion of PM	[%] / 100							
Hourly Emissions of PM _{2.5}	0.04 lb	0.22	=	7.82E-05 lb/hr						
(lb/hr) =	hr	100								
⁴ Hourly Emissions of $PM_{2.5}$ (lb/hr) = Hourly Emissions of PM (lb/hr) * $PM_{2.5}$ Portion of PM (%) / 100 Hourly Emissions of $PM_{2.5}$ 0.04 lb 0.22 = 7.82E-05 lb/hr										

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion **Fugitive Components Emissions Calculations** EPN FUG-BD-V / FIN FUG-BD-V

Emissions Summary

	Emission Rates				
Pollutant	(lb/hr) (tpy)				
VOC	0.34	1.18			

Component Fugitive Emissions

		Emission Factor ¹			Emi	ssions
Equipment/Service	Component Count	[(lb/hr)/component]	LDAR Program	Reduction Credit ²	(lb/hr)	(tpy)
Valves						
Gas/Vapor	20	0.0089	28 LAER	97%	5.34E-03	0.02
Light Liquid	13	0.0035	28 LAER	97%	1.37E-03	5.98E-03
Heavy Liquid	15	0.0007	28 LAER	30%	7.35E-03	0.03
Pumps						
Light Liquid	2	0.0386	28 LAER	93%	5.40E-03	0.02
Heavy Liquid	1	0.0161	28 LAER	30%	0.01	0.05
Flanges/Connectors						
Gas/Vapor	232	0.0029	28 LAER	97%	0.02	0.09
Light Liquid	296	0.0005	28 LAER	97%	4.44E-03	0.02
Heavy Liquid	143	0.00007	28 LAER	30%	7.01E-03	0.03
Relief Valve ³						
Gas/Vapor	2	0.2293	28 LAER	100%	0	0
Light Liquid	1	0.0035	28 LAER	100%	0	0
Sampling Connections ⁴	2	0.033	28 LAER	0%	0.07	3.30E-05
		•		Total Emissions:	0.13	0.27
				% VOC	111%	111%
				VOC Emissions	0.14	0.30

¹ Emission Factors from the TCEQ Air Permit Technical Guidance for Chemical Sources - Fugitive Guidance (APDG 6422v2) dated 6/18, for SOCMI facilities without ethylene (<11%).

² Reduction credits based on Table V: Control Efficiences for LDAR from the TCEQ Air Permit Technical Guidance for Chemical Sources - Fugitive Guidance (APDG 6422v2) dated 6/18. ³ Relief valves will be routed back to process or to control device, so 100% credit is applied.

⁴ Emission factor for Sampling Connections is in terms of pounds per hour per sample taken.

Speciated Component VOC Emissions

Speciation	Wt%	Houlry Emissions (lb/hr)	Annual Emission (tpy)	
Propylene	0.27%	0.00	0.00	
Butane	11.46%	0.01	0.03	
Isobutane	13.28%	0.02	0.04	
Butene	25.91%	0.03	0.07	
Butadiene	18.00%	0.02	0.05	
Pentane	1.03%	0.00	0.00	
Furfural	5.39%	0.01	0.01	
DMF	1.42%	0.00	0.00	
Olefins-U	7.45%	0.01	0.02	
DIB	5.72%	0.01	0.02	
Methanol	3.41%	0.00	0.01	
MTBE	5.25%	0.01	0.01	
Isooctene	5.25%	0.01	0.01	
ETBE	5.25%	0.01	0.01	
Fuel Oil	1.41%	0.00	0.00	

Process Drain Emissions

		Emission Factor ¹		Reduction	Emi	ssions
Equipment/Service	Equipment/Service Component Count		[(lb/hr)/component] LDAR Program		(lb/hr)	(tpy)
Process Drains	520	0.07	28 LAER	95%	1.82	7.97
				Total Emissions:	1.82	7.97
				% VOC	11%	11%
				VOC Emissions	0.20	0.88
¹ Emission Factors from the TCEO Air Parmit	Technical Guidance for Chemi	cal Sources - Fugitive Guidan	ca (APDC 6422v2) dated 6/18	refinery factor from pro	case drains fro	m Table II.

sion Factors from the TCEQ Air Permit Technical Guidance for Chemical Sources - Fugitive Guidance (APDG 6422v2) dated 6/18, refinery factor from process drains from Table II: Facilty/Compound Specific Fugitive Emissions Factors.

² Reduction credit based on quarterly monitoring of process drains.

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Fugitive Components Emissions Calculations EPN FUG-BD-V / FIN FUG-BD-V

Speciation	Wt%	Houlry Emissions (lb/hr)	Annual Emission (tpy)
Propylene	0.03%	0.00	0.00
Butane	1.15%	0.02	0.09
Isobutane	1.33%	0.02	0.11
Butene	2.59%	0.05	0.21
Butadiene	1.80%	0.03	0.14
Pentane	0.10%	0.00	0.01
Furfural	0.54%	0.01	0.04
DMF	0.14%	0.00	0.01
Olefins-U	0.75%	0.01	0.06
DIB	0.57%	0.01	0.05
Methanol	0.34%	0.01	0.03
MTBE	0.53%	0.01	0.04
Isooctene	0.53%	0.01	0.04
ETBE	0.53%	0.01	0.04
Fuel Oil	0.14%	0.00	0.01
Water	90.00%	0.12	0.25

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion MSS Emissions Summary EPN MSS-BD / FIN MSS-BD EPN MSS-FLR / FIN MSS-FLR

EPN Description	Description	V	C	C	0	N	0 _x	S	02	CO2e
	Description	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy)
MSS-BD	Heat Exchangers	0.19	< 0.01							
MSS-BD	Internal Floating Roof Tanks	188.04	0.89							
MSS-BD	Towers	1.21	< 0.01							
MSS-BD	Vessel Openings (Drums/Condensate Pots)	0.07	< 0.01							
MSS-BD	Centrifugal Pumps	< 0.01	< 0.01							
MSS-FLR	Portable Flare	3.08	0.02	1.39	0.01	0.16	0.00	< 0.01	< 0.01	6.67

Emissions Summary

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion MSS Emissions Calculations - Heat Exchangers EPN MSS-BD / FIN MSS-BD

Emissions Summary^{1,2,3}

	Emission Rates					
Pollutant	EPN MSS-BD	EPN MSS-BD				
	(lb/hr)	(tpy)				
VOC	0.19	<0.01				

¹Twelve (12) heat exchangers may be opened simultaneously.

²Fourteen (14) heat exchangers are being added to the ETBE unit.

³Emissions represent the worst case operating scenario using the combination of heat exchanger and chemical that produce the highest emissions.

Vapor Space Emissions Calculations

Chemical ¹	Displaced Volume ² (ft ³)	Total Vessel Pressure (psia)	Vessel Temperature (°F)	Vapor Molecular Weight (lb/lb-mol)	Concentration of Vapor ³ (ppmv)	# Events Per Hour	# Events Per Year	Saturated Vapor Emissions (lb/hr)	Saturated Vapor Emissions (tpy)
Isobutylene	126.7	14.7	95.0	56.1	500	12	14	0.11	< 0.01
ETBE	126.7	14.7	95.0	102.2	500	12	14	0.19	< 0.01
Ethanol	126.7	14.7	95.0	46.1	500	12	14	0.09	< 0.01

¹Chemicals expected to be found in ETBE unit. All chemicals have a VP > 0.1 psia (neglect clingage emissions).

²Based on largest heat exchanger in ETBE unit.

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion MSS Emissions Calculations - Towers EPN MSS-BD / FIN MSS-BD

Emissions Summary^{1,2,3}

Pollutant	Emission Rates					
	EPN MSS-BD	EPN MSS-BD				
	(lb/hr)	(tpy)				
VOC	1.21	0.001				

¹Three (3) towers may be opened simultaneously.

²Four (4) towers are being added to the ETBE/iC8 units.

³Emissions represent the worst case operating scenario using the combination of tower system and chemical that produce the highest emissions.

Vapor Space Emissions Calculations

Chemical ¹	Displaced Volume ² (ft ³)	Total Vessel Pressure (psia)	Vessel Temperature (°F)	Vapor Molecular Weight (lb/lb-mol)	Concentration of Vapor ³ (ppmv)	# Events Per Hour	# Events Per Year	Saturated Vapor Emissions (lb/hr)	Saturated Vapor Emissions (tpy)
DIB	2,920.7	14.7	95.0	112.2	500	3	4	1.21	0.001
Isooctene	2,920.7	14.7	95.0	112.2	500	3	4	1.21	0.001
Isobutylene	2,920.7	14.7	95.0	56.1	500	3	4	0.61	0.000
ETBE	2,920.7	14.7	95.0	102.2	500	3	4	1.11	0.001
Ethanol	2,920.7	14.7	95.0	46.1	500	3	4	0.50	0.000

¹Chemicals expected to be found in ETBE and iC8 units. All chemicals have a VP > 0.1 psia (neglect clingage emissions).

²Based on largest heat exchanger in ETBE/iC8 units.

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion MSS Emissions Calculations - Towers EPN MSS-BD / FIN MSS-BD

Emissions Summary^{1,2,3}

	Emission Rates				
Pollutant	EPN MSS-BD	EPN MSS-BD			
	(lb/hr)	(tpy)			
VOC	0.07	< 0.01			

¹Assume all three (3) vessels may be opened simultaneously.

¹Two (2) condensate pots for the ETBE/iC8 units and one (1) methanol drum being added for the HNO Plant.

³Emissions represent the worst case operating scenario using the combination of vessel and chemical that produce the highest emissions.

Vapor Space Emissions Calculations

Equipment	Chemical ¹	Displaced Volume ² (ft ³)	Total Vessel Pressure (psia)	Vessel Temperature (°F)	Vapor Molecular Weight (lb/lb-mol)	Concentration of Vapor ³ (ppmv)	# Events Per Hour	# Events Per Year	Saturated Vapor Emissions (lb/hr)	Saturated Vapor Emissions (tpy)
ETBE Condensate Pot	Ethanol	190.85	14.7	95	46.07	500	3	3	< 0.032561	1.63E-05
ETBE Condensate Pot	Isobutylene	190.85	14.7	95	56.11	500	3	3	0.040	1.98E-05
ETBE Condensate Pot	ETBE	190.85	14.7	95	102.18	500	3	3	0.072	3.61E-05
MeOH Hold Drum	Methanol	190.85	14.7	95	32.04	500	3	3	<0.02261	1.13E-05

¹Chemicals expected to be found in ETBE unit and HNO Plant. All chemicals have a VP > 0.1 psia (neglect clingage emissions).

 $^2\mathrm{Based}$ on largest heat exchanger in ETBE unit and HNO Plant.

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion MSS Emissions Calculations - Pumps EPN MSS-BD / FIN N MSS-BD

Emissions Summary^{1,2,3}

	Emission Rates				
Pollutant	EPN MSS-BD	EPN MSS-BD			
	(lb/hr)	(tpy)			
VOC	< 0.01	< 0.01			

¹Four (4) pumps may be opened simultaneously. ¹Four (4) centrifugal pumps being added for the ETBE/iC8 units.

³Emissions represent the worst case operating scenario using the combination of pump and chemical that produce the highest emissions.

Vapor Space Emissions Calculations

Pump Size	Chemical ¹	Displaced Volume ²	Total Vessel Pressure	Vessel Temperature	Vapor Molecular	Concentration of	# Events Per	# Events Per	Saturated Vapor	Saturated Vapor
		(ft ³)	(psia)	(°F)	Weight (lb/lb-mol)	Vapor ³ (ppmv)	Hour	Year	Emissions (lb/hr)	Emissions (tpy)
Large	DIB	0.98	14.7	95	112	500	4	4	5.45E-04	2.73E-07
Large	Isooctene	0.98	14.7	95	112	500	4	4	5.45E-04	2.73E-07
Large	Isobutylene	0.98	14.7	95	56	500	4	4	2.73E-04	1.36E-07
Large	ETBE	0.98	14.7	95	102	500	4	4	4.97E-04	2.48E-07
Large	Ethanol	0.98	14.7	95	46	500	4	4	2.24E-04	1.12E-07

 1 Chemicals expected to be found in ETBE and iC8 units. All chemicals have a VP > 0.1 psia (neglect clingage emissions).

²Based on largest heat exchanger in ETBE/iC8 units.

Emissions Summary^{1,2}

	Uncontrolle	d Emissions	Controlled Emissions ³				
Pollutant	EPN MSS-BD	EPN MSS-BD	EPN MSS-FLR	EPN MSS-FLR			
	(lb/hr)	(tpy)	(lb/hr)	(tpy)			
VOC	188.04	0.89	3.08	0.025			

¹Tank 2D-6 will be used as an MTBE/ETBE/DIB/IC8 storage tank. Emissions represent the worst-case operating scenario with the worst-case storage material producing the highest emissions.

²Hourly emissions are based on either one cleaning or one change of service (whichever produces the highest emissions) in any given hour. Annual emissions are based on one cleaning and one change of service taking place in a year. ³Emissions are controlled by a portable flare

Tank Vapor Space Volume¹

Taula ID	Taula Taura	Taul Diamatan D (A)	Leg Height, h _L (ft)	Heel Height h (ft)	Ideal Gas Constant, R	Vapor Space Volume,
Tank ID	Tank Type	Tank Diameter, D (ft)	Leg neight, n _L (it)	Heel Height, h _{LX} (ft)	(psia-ft ³ /lbmol°R)	V_V (ft ³)
Tank 2D6	IFR	75	4.5	0.0	10.73	19,880

¹Based on AP-42, November 2006, Section 7.1.3.1.

Equations:

Vapor Space Volume Calculation:

5,625 ft^2 (4.5 - 0.0) ft 19,880 ft^3 π =

Tank Contents

Tank ID	Tank Type	Activity	Material Stored	Daily Max Stock Temp ¹ (°F)	Daily Ambient Average Temperature Range ² (°R)	VP at Daily Max Stock Temp ³ (psia)	Liquid Density (lb/gal)	M _v - Vapor Molecular Weight (lb/lb-mol)	M _L - Liquid Molecular Weight (lb/lb-mol)
Tank 2D6	IFR	Cleaning	MTBE	95.0	35.22	7.21	6.18	88.15	88.15
Tank 2D6	IFR	Change of Service	MTBE	95.0	35.22	7.21	6.18	88.15	88.15
Tank 2D6	IFR	Cleaning	DIB	95.0	35.22	1.02	5.97	112.21	112.21
Tank 2D6	IFR	Change of Service	DIB	95.0	35.22	1.02	5.97	112.21	112.21
Tank 2D6	IFR	Cleaning	Isooctene	95.0	35.22	1.42	5.97	112.21	112.21
Tank 2D6	IFR	Change of Service	Isooctene	95.0	35.22	1.42	5.97	112.21	112.21
Tank 2D6	IFR	Cleaning	ETBE	95.0	35.22	3.71	6.14	102.17	102.17
Tank 2D6	IFR	Change of Service	ETBE	95.0	35.22	3.71	6.14	102.17	102.17

¹The maximum liquid surface temperature for ambient storage tanks is 95°F. Short-term Emissions from Floating Roof Tanks, APDG6419v1, Released 02/18.

²Daily Ambient Average Temperature Range is based on EPA Tanks 4.09d Meterological Data for Houston, Texas and a tank paint solar absorbance (0.390) for an "Aluminum - Specular" tank

³Vapor pressure estimated using Antoine's equation. Antoine's coefficients were obtained from Yaws' Handbook of Antoine Coefficients for Vapor Pressure (2nd Electronic Edition).

Standing Idle Emissio	ons ^{1,2}											EPN MSS-BD		EPN MSS-FLR	
Tank ID	Tank Type	Activity	Material Stored	n _d - Number of Days Tank Stands Idle (Per Event)	# Events Per Year	K _E - Vapor Expansion Factor	K _S - Vapor Saturation Factor ²	L _{SL} - Standing Idle Losses (lbs/event)	L _{SL} - Standing Idle Losses ³ (lbs/hr)	Capture Efficiency	Portable Flare Efficiency	Uncontrolled L _{SL} - Standing Idle Losses (lb/hr)	Uncontrolled L _{SL} - Standing Idle Losses (tpy)	Controlled L _{SL} - Standing Idle Losses (lb/hr)	Controlled L _{SL} - Standing Idle Losses (tpy)
Tank 2D6	IFR	Cleaning	MTBE	5.00	1.00	0.06	0.6	363.70	3.03	75.0%	98.0%	0.76	0.05	0.05	0.003
Tank 2D6	IFR	Change of Service	MTBE	1.00	1.00	0.06	0.6	72.74	3.03	0%		3.03	0.04		
Tank 2D6	IFR	Cleaning	DIB	5.00	1.00	0.06	0.6	65.25	0.54	75.0%	98.0%	0.14	0.01	0.01	0.0005
Tank 2D6	IFR	Change of Service	DIB	7.00	1.00	0.06	0.6	91.34	0.54	0%		0.54	0.05		
Tank 2D6	IFR	Cleaning	Isooctene	5.00	1.00	0.06	0.6	91.19	0.76	75.0%	98.0%	0.19	0.01	0.01	0.0007
Tank 2D6	IFR	Change of Service	Isooctene	7.00	1.00	0.06	0.6	127.67	0.76	0%		0.76	0.06		
Tank 2D6	IFR	Cleaning	ETBE	5.00	1.00	0.06	0.6	216.92	1.81	75.0%	98.0%	0.45	0.03	0.03	0.002
Tank 2D6	IFR	Change of Service	ETBE	1.00	1.00	0.06	0.6	43.38	1.81	0%		1.81	0.02		

¹Based on AP-42, November 2006, Section 7.1.3.1. ${}^{2}K_{S} = 0.6$ for full liquid heel (Section 7.1.3.2.2)

³Standing Idle Losses with Liquid Heel are calculated using equation 2-16, L_{SL} (lbs/event) = n_d * K_E * (PV_V/RT) * M_V * K_S

Sample Calculations - Cleaning (MTBE)

Uncontrolled Emissions (lb/hr)	=	5.00 day(s)	0.06	7.21 psia	19,880 ft^3	0.6	88.15 lb	1 event	(1 - 0.75)	=	0.76 lb/hr	
		event		10.73 (psia-ft^3)/(lb-mol- °R)	555.67 °R		lb-mol	120 hours		_		
Uncontrolled Emissions (tpy)	=	0.76 lb	24.0 hours	5.00 days	1.00 event(s)	1 ton	_ =	0.05 tpy				
		hr	day	event	year	2000 lbs						
Controlled Emissions (lb/hr)	=	5.00 day(s)	0.06	7.21 psia	19,880 ft^3	0.6	88.15 lb	1 event	75.0%	(1 - 0.98)	=	0.05 lb/hr
		event		10.73 (psia-ft^3)/(lb-mol- °R)	555.67 °R		lb-mol	120 hours				
Controlled Emissions (tpy)	=	0.05 lb	24.0 hours	5.00 days	1.00 event(s)	1 ton	=	0.003 tpy				
		hr	day	event	year	2000 lbs						
Sample Calculations - Change of Service (MTBE)												
Uncontrolled Emissions (lb/hr)	=	1.00 day(s)	0.06	7.21 psia	19,880 ft^3	0.6	88.15 lb	1 event	=	3.03 lb/hr		
		event		10.73 (psia-ft^3)/(lb-mol- °R)	555.67 °R		lb-mol	24 hours				
Uncontrolled Emissions (tpy)	=	3.03 lb	24.0 hours	1.00 days	1.00 event(s)	1 ton	=	0.04 tpy				
		hr	day	event	year	2000 lbs	-					

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion MSS Emissions Calculations - IFR Tanks EPN MSS-BD / FIN MSS-BD

Cleaning Emissions ¹											EPN MSS-FLR					
Tank ID	Tank Type	Activity	Material Stored	# Events Per Year	Cleaning Material Depth (ft)	Volume Displaced During Cleaning (ft ³)	Daily Max Stock Temp (°F)	VP at Daily Max Liq Temp (psia)	M _v - Vapor Molecular Weight (lb/lbmol)	K _S - Vapor Saturation Factor ²	Cleaning Losses (lbs/event)	Hours Per Event (hrs)	Cleaning Losses ³ (lbs/hr)	Portable Flare Efficiency	Controlled Cleaning Losses (lb/hr)	Controlled Cleaning Losses (tpy)
Tank 2D6	IFR	Cleaning	MTBE	1.00	4.5	19,880.4	95.0	7.21	88.15	0.6	1271.14	8.26	153.85	98.0%	3.08	0.013
Tank 2D6	IFR	Cleaning	DIB	1.00	4.5	19,880.4	95.0	1.02	112.21	0.6	228.03	8.26	27.60	98.0%	0.55	0.002
Tank 2D6	IFR	Cleaning	Isooctene	1.00	4.5	19,880.4	95.0	1.42	112.21	0.6	318.71	8.26	38.58	98.0%	0.77	0.003
Tank 2D6	IFR	Cleaning	ETBE	1.00	4.5	19,880.4	95.0	3.71	102.17	0.6	758.13	8.26	91.76	98.0%	1.84	0.008

¹Based on AP-42, November 2006, Section 7.1.3.1. ²K₅ = 0.6 for full liquid heel (Section 7.1.3.2.2) ³Cleaning Losses are calculated using equation 2-23, L_{sL} (lbs/event) = K₅ * (PV_V/RT) * M_V

Sample Calculations - Cleaning (MTBE)

Uncontrolled Emissions (lb/hr)	=	0.60	7.21 psia	19,880 ft^3	88.15 lb	1 event	(1 - 0.98)	=	3.08 lb/hr
			10.73 (psia-ft^3)/(lb-mol- °R)	555.67 °R	lb-mol	8.26 hours			
Uncontrolled Emissions (tpy)	=	3.08 lb	8.26 hours	1.00 event(s)	1 ton	(1 - 0.98)	=	0.013 tpy	
		hr	event	year	2000 lbs				

Refloating Emissions ^{1,}	missions ^{1,2,3}													EPN MSS-BD		EPN MSS-FLR			
Tank ID	Tank Type	Activity	Material Stored	# Events Per Year	Liquid Heel	Daily Max Stock Temp (°F)	VP at Daily Max Liq Temp (psia)	M _v - Vapor Molecular Weight (lb/lbmol)	Filling Saturation Factor ² , S	Maximum Filling Rate (gph)	Filling Rate (hours)	Capture Efficiency	Portable Flare Efficiency	Refloating Losses ³ (lbs/event)	Refloating Losses (lbs/hr)	Uncontrolled Refloating Losses (lbs/hr)	Uncontrolled Refloating Losses (tpy)	Controlled Refloating Losses (lbs/hr)	g Controlled Reloating Losses (tpy)
Tank 2D6	IFR	Cleaning	MTBE	1.00	Full Liquid Heel	95.0	7.21	88.15	0.6	22,000.00	6.76	75.0%	98.0%	1271.14	188.04	47.0	0.16	2.821	0.010
Tank 2D6	IFR	Change of Service	MTBE	1.00	Full Liquid Heel	95.0	7.21	88.15	0.6	22,000.00	6.76	0.00%		1271.14	188.04	188.0	0.64		
Tank 2D6	IFR	Cleaning	DIB	1.00	Full Liquid Heel	95.0	1.02	112.21	0.6	22,000.00	6.76	75.0%	98.0%	228.03	33.73	8.4	0.03	0.506	0.002
Tank 2D6	IFR	Change of Service	DIB	1.00	Full Liquid Heel	95.0	1.02	112.21	0.6	22,000.00	6.76	0.00%		228.03	33.73	33.7	0.11		
Tank 2D6	IFR	Cleaning	Isooctene	1.00	Full Liquid Heel	95.0	1.42	112.21	0.6	22,000.00	6.76	75.0%	98.0%	318.71	47.15	11.8	0.04	0.707	0.002
Tank 2D6	IFR	Change of Service	Isooctene	1.00	Full Liquid Heel	95.0	1.42	112.21	0.6	22,000.00	6.76	0.00%		318.71	47.15	47.1	0.16		
Tank 2D6	IFR	Cleaning	ETBE	1.00	Full Liquid Heel	95.0	3.71	102.17	0.6	22,000.00	6.76	75.0%	98.0%	758.13	112.15	28.0	0.09	1.682	0.006
Tank 2D6	IFR	Change of Service	ETBE	1.00	Full Liquid Heel	95.0	3.71	102.17	0.6	22,000.00	6.76	0.00%		758.13	112.15	112.2	0.38		
¹ Based on AP-42, Novembe	er 2006, Section 7.1.3.1.																	-	

² Se 0.6 for full liquid held ection 7.1.3.2.2) ³ Filling Losses with Liquid Held are calculated using equation 2-26, L_{FL} (lbs/event) = (PV_v/RT) * M_v * S

Sample Calculations - Cleaning (MTBE)

Uncontrolled Emissions (lb/hr)	=	1.00 event(s)	0.6	7.21 psia	19,880 ft^3	88.15 lb	1 event	(1 - 0.75)	=	47.01 lb/hr	
		year		10.73 (psia-ft^3)/(lb-mol- °R)	555.67 °R	lb-mol	6.76 hours				
Uncontrolled Emissions (tpy)	=	47.01 lb hr	6.76 hours event	1.00 event(s)	1 ton 2000 lbs	_ =	0.16 tpy				
		nr	event	year	2000 lbs						
Controlled Emissions (lb/hr)	=	1.00 event(s)	0.6	7.21 psia	19,880 ft^3	88.15 lb	1 event	75.0%	(1 - 0.98)	=	2.82 lb/hr
		year		10.73 (psia-ft^3)/(lb-mol- °R)	555.67 °R	lb-mol	6.76 hours				
Controlled Emissions (tpy)	=	1271.14 lb	6.76 hours	1.00 event(s)	1 ton	=	0.010 tpy				
		hr	event	year	2000 lbs						
Sample Calculations - Change of Service (MTBE)											
Uncontrolled Emissions (lb/hr)	=	1.00 event(s)	0.6	7.21 psia	19,880 ft^3	88.15 lb	1 event	=	188.04 lb/hr		
		year		10.73 (psia-ft^3)/(lb-mol- °R)	555.67 °R	lb-mol	6.76 hours	-			
Uncontrolled Emissions (tpy)	=	188.04 lb	6.76 hours	1.00 event(s)	1 ton		0.636 tpy				
		hr	event	year	2000 lbs						

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion MSS Emissions Calculations - Portable Flare EPN MSS-FLARE / FIN MSS-FLARE

Emissions Summary

	Emissio	on Rates
Pollutant	EPN MSS-FLR	EPN MSS-FLR
	(lb/hr)	(tpy)
NO _X	0.162	0.001
CO	1.387	0.011
VOC	3.077	0.025
SO ₂	0.000	0.000
N ₂ O		0.000
CH_4		0.000
CO ₂		6.652
CO ₂ e		6.667

Speciated VOC Emissions

		Stream Mas	s Flowrate ¹	DRE ²	Post-Combustion	VOC Emissions ^{3,4}
Component	CAS No.	(lb/hr)	(tpy)	(%)	(lb/hr)	(tpy)
MTBE	1634-04-4	153.85	1.25	98%	3.077	0.025
DIB	25167-70-8	27.60	0.22	98%	0.552	0.004
Isooctene	107-39-1	38.58	0.31	98%	0.772	0.006
ETBE	637-92-3	91.76	0.74	98%	1.835	0.015

¹ Mass flow rate represents only VOC contributions from waste streams.

² Per TCEQ Best Available Control Technology for Flares and Vapor Combustors (dated, 08/2011), DRE is 99% for certain compounds up to three carbons, 98% otherwise.

³ Example hourly emissions calculations:

Hourly Uncombusted Gas Flare Emissions (lb/hr) = Mass Flowrate (lb/hr) * (1 - DRE/100) Hourly Uncombusted Gas Emissions from MTBE (lb/hr) = 153.85 lb (1 - 0.98)= 3.08 lb/hr hr ⁴ Example annual emissions calculations: Hourly Uncombusted Gas Flare Emissions (lb/hr) = Annual (tpy) * (1 - DRE/100) Annual Uncombusted Gas Emissions from MTBE (tpy) = <u>1.25 lb</u> (1 - 0.98) — = 0.02 tpy hr

Stream Calculation Details

Stream	Inputs	Value	Units		
Pilot Gas	Operating Hours	326	hrc		
Waste Stream	Operating Hours	320	hrs		

Pilot Gas Composition

							Hourly	Annual	
						Component Heating			Total CO ₂ after
		Molecular Weight	Mass	Stream Ma	ss Flowrate	Value	Stream Heating Value	Stream Heating Value	Combustion
Component	CAS No.	(lb/lb-mol)	Fraction	(lb/hr)	(tpy)	(Btu/lb)	(Btu/hr)	(Btu/yr)	(tpy)
Methane	74-82-8	16.04	1.0	0.14	0.02	22,000	3,025	984,852	0.06

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion MSS Emissions Calculations - Portable Flare EPN MSS-FLARE / FIN MSS-FLARE

Waste Gas Stream Compostion

							Hourly	Annual	
						Component Heating			Total CO ₂ after
		Molecular Weight	Mass	Stream Ma	ss Flowrate	Value	Stream Heating Value	Stream Heating Value	Combustion
Component	CAS No.	(lb/lb-mol)	Fraction	(lb/hr)	(tpy)	(Btu/lb)	(Btu/hr)	(Btu/yr)	(tpy)
MTBE	1634-04-4	88.15	1.000	153.85	1.25	16,400	2,523,208	40,955,278	3.05
DIB	25167-70-8	112.21	1.000	27.60	0.22	20,100	554,768	9,004,676	0.69
Isooctene	107-39-1	112.21	1.000	38.58	0.31	20,100	775,376	12,585,469	0.96
ETBE	637-92-3	102.17	1.000	91.76	0.74	16,900	1,550,768	25,171,183	1.89

Combustion Emissions (NO_x, CO, SO₂)

Emission Factors

Pollutant	Flare Factors ^{1, 2} (lb/MMBtu)
SO ₂	5.60E-03
NO _X	0.064
СО	0.550

¹ NO_x and CO emission factors based on TCEQ's "Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers" (dated

October 2000). Factors are maximum possible for low-BTU waste streams in air-assisted flares.

 2 SO₂ emission factor based on 2 grains/100 scf from pilot natural gas (1020 Btu/lb).

Fuel Gas Sulfur:	2 gr Sulfur	lb	scf	2 lb-mol SO2	1000000 Btu	=	5.60E-03	lb SO2
	100 scf	7000 gr	1020 Btu	1 lb-mol S	MMBtu	_		MMBtu

Emissions from Combustion

Pollutant	Hourly ¹ (lb/hr)	Annual ² (tpy)
NO _X	0.162	0.001
CO	1.387	0.011
SO ₂	0.00002	0.0000

GHG Emissions

Emission Factors

Pollutant	Emission Factor	Emission Factor Units
N ₂ O	0.0001	kg N ₂ O/MMBtu

 1 Nitrous oxide (N₂O) emission factor from 40 CFR 98, Subpart C, Table C-2 for Natural Gas. Assumed same factor for waste gas.

Annual Emissions (tpy)					
CO ₂	CH ₄	N ₂ O	$CO_2 e^{1,2}$		
6.65	0.00	9.78E-06	6.67		

¹ CO_2e (tpy) = CO_2 Emission (tpy) * CO_2 GWP + CH_4 Emission (tpy) * CH_4 GWP + N_2O Emission (tpy) * N_2O GWP

² Per 40 CFR 98 - Mandatory Greenhouse Gas Reporting, Subpart A, Table A-1. Total CO₂e emissions are calculated based on the following Global Warming Potentials

(GWP):

Pollutant	GWP
CO ₂	1
CH ₄	25
N ₂ O	298

Plant Flare (EP-5) Emissions Summary

Pollutant	Hourly (lb/hr)	Annual (tpy)
NO _X	29.09	3.44
CO	148.21	17.51
VOC	190.74	36.85
SO ₂	< 0.01	< 0.01
1,3-Butadiene	70.42	4.42
N ₂ O		1.11E-02
CH4		4
CO ₂		6,870
CO ₂ e		6,984

Speciated VOC Emissions

		Stream Mass Flowrate ¹		DRE ²	Post-Combustion	VOC Emissions ^{3,4}
Component	CAS No.	(lb/hr)	(tpy)	(%)	(lb/hr)	(tpy)
Ethylene	74-85-1	0.2	0.17	99%	0.002	0.002
Propane	74-98-6	204.0	24.06	99%	2.040	0.241
Propylene	115-07-1	176.4	24.74	99%	1.764	0.247
Isobutane	75-28-5	4263.2	1032.56	98%	85.264	20.651
n-Butane	106-97-8	1894.7	32.93	98%	37.895	0.659
Trans-2-butene	624-64-6	923.6	33.11	98%	18.472	0.662
Cis-2-butene	590-18-1	232.9	4.22	98%	4.658	0.084
1,3-Butadiene	106-99-0	2619.3	221.00	98%	52.387	4.420
1-Butene	106-98-9	3282.8	183.16	98%	65.656	3.663
Isobutylene	115-11-7	3568.0	237.60	98%	71.360	4.752
Pentane (C5+)	109-66-0	762.3	73.35	98%	15.247	1.467
Total VOC		9,768.8	1.866.89		190.74	36.85

¹ Annual Stream Mass Flowrate based on 7/2017. Hourly Stream Flowrate based on 1/17/18 12:00 PM.

² Per TCEQ Best Available Control Technology for Flares and Vapor Combustors (dated, 08/2011), DRE is 99% for certain compounds up to three carbons, 98% otherwise.

³ Example hourly emissions calculations:

Hourly Uncombusted Gas Flare Emissions (lb/hr) = Mass Flowrate (lb/hr) * (1 - DRE/100)			
Hourly Uncombusted Gas Emissions from Isobutane (lb/hr) =	4263.21 lb	(1 - 0.98)	= 85.26 lb/hr
	hr		

⁴ Example annual emissions calculations:

Annual Uncombusted Gas Flare Emissions (tpy) = Hourly Waste Gas Emissions (lb/hr) * 8,760 hrs/yr * 1 ton / 2,000 lbs Annual Uncombusted Gas Emissions from Isobutane (tpy) = 1032.56 ton (1 - 0.98) yr = 20.65 tpy

Stream Calculation Details

Stream	Inputs	Value	Units
Pilot Gas	Operating Hours	8,760	hra
Waste Stream	operating rours	0,700	hrs

Pilot Gas Composition

EPN	EP-5								
FIN	PROCEMISS								
						Component Heating	Total Ho	at to Flare	Total CO ₂ after
		Molecular Weight	Mass	Stream Mas	s Flowrate	Value	Total Hea	it to riare	Combustion
Component	CAS No.	(lb/lb-mol)	Fraction	(lb/hr)	(tpy)	(Btu/lb)	MMBtu/hr	MMBtu/hr	(tpy)
Methane	74-82-8	16.04	1.0	56.29	246.54	22,000	1.238	10,848	670

Waste Gas Stream Compostion

EPN	EP-5	7						
FIN	PROCFLARE							
		Molecular Weight	Stream M	Stream Mass Flowrate ¹		Total Heat to Flare		Total CO ₂ after Combustion
Component	CAS No.	(lb/lb-mol)	(lb/hr)	(tpy)	(Btu/lb)	MMBtu/hr	MMBtu/yr	(tpy)
Hydrogen	1333-74-0	2.02	2.19	2.31	61,200	0.134	282	0.0
Nitrogen	7727-37-9	28.01	332.04	125.59	0	0.000	0	0.0
Methane	74-82-8	16.04	1,567.43	197.79	24,000	37.618	9,494	532
Carbon Monoxide	630-08-0	28.01	0.00	1.02	4,300	0.000	9	2
Carbon Dioxide	124-38-9	44.01	22.27	8.45	0	0.000	0	8
Ethylene	74-85-1	28.05	0.17	0.17	21,000	0.004	7	1
Ethane	74-84-0	30.07	69.66	5.74	23,100	1.609	265	16
Propane	74-98-6	44.10	203.97	24.06	22,000	4.487	1,059	71
Propylene	115-07-1	42.08	176.37	24.74	23,000	4.056	1,138	76
Isobutane	75-28-5	58.12	4,263.21	1,032.56	22,000	93.791	45,433	3,065
n-Butane	106-97-8	58.12	1,894.73	32.93	23,000	43.579	1,515	98
Trans-2-butene	624-64-6	56.11	923.62	33.11	23,000	21.243	1,523	102
Cis-2-butene	590-18-1	56.11	232.92	4.22	23,000	5.357	194	13
1,3-Butadiene	106-99-0	54.09	2,619.33	221.00	21,000	55.006	9,282	705
1-Butene	106-98-9	56.11	3,282.80	183.16	22,000	72.222	8,059	563
Isobutylene	115-11-7	56.11	3,568.01	237.60	23,000	82.064	10,930	731
Pentane (C5+)	109-66-0	72.15	762.33	73.35	7,000	5.336	1,027	219

¹ Annual Stream Mass Flowrate based on 7/2017. Hourly Stream Flowrate based on 8/26/17 09:00 AM.

Combustion Emissions (NO_X, CO, SO₂)

Emission Factors

EPN	FIN	Pollutant	Flare Factors ^{1, 2} (lb/MMBtu)
		NO _X	0.068
EP-5	PROCEMISS	CO	0.347
		SO ₂	5.60E-04
EP-5	PROCFLARE	NO _X	0.068
EI 5	I ROCI EMRE	CO	0.347

¹ NO_X and CO emission factors based on TCEQ's "Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers" (dated

October 2000). Factors are maximum possible for low-BTU waste streams in steam-assisted flares.

 2 SO₂ emission factor based on 0.2 grains/100 scf from pilot natural gas (1020 Btu/lb).

Fuel Gas Sulfur:	0.2 gr Sulfur	lb	scf	2 lb-mol SO2	1000000 Btu	=	5.60E-04	<u>lb SO2</u>
	100 scf	7000 gr	1020 Btu	1 lb-mol S	MMBtu			MMBtu

EPN	FIN	MMBtu/hr	MMBtu/yr
	PROCEMISS	1.24	10,847.92
EP-5	PROCFLARE	426.5	90,215.9
	Total	427.75	101,063.79

Emissions from Combustion

	Hourly ¹	Annual ²
Pollutant	(lb/hr)	(tpy)
NO _X	29.1	3.44
CO	148.2	17.5
SO ₂	0.0000	0.0000

GHG Emissions

Emission Factors		
Pollutant	Emission Factor	Emission Factor
Tonutant	Emission ractor	Units
N20	0.0001	kg N ₂ O/MMBtu

¹ Nitrous oxide (N₂O) emission factor from 40 CFR 98, Subpart C, Table C-2 for Natural Gas. Assumed same factor for waste gas.

Annual Emissions (tpy)									
CO ₂	CO ₂ CH ₄ N ₂ O CO ₂ e ^{1,2}								
6,870	4	1.11E-02	6,984						

 $\label{eq:constraint} \begin{array}{|c|c|c|c|c|} \hline 6,870 & 4 & 1.11E-02 & 6,984 \\ \hline 1 & \text{CO}_2\text{e} (\text{tpy}) = \text{CO}_2 \text{ Emission} (\text{tpy}) * \text{CO}_2 \text{ GWP} + \text{CH}_4 \text{ Emission} (\text{tpy}) * \text{CH}_4 \text{ GWP} + \text{N}_2\text{O} \text{ Emission} (\text{tpy}) * \text{N}_2\text{O} \text{ GWP} \\ \hline 2 & \text{Per 40 CFR 98} & \text{-} \text{Mandatory Greenhouse Gas Reporting, Subpart A, Table A-1}. \ \text{Total CO}_2\text{e} \text{ emissions are calculated based on the following Global Warming} \\ \hline \end{array}$

Potentials (GWP):

Pollutant	GWP
CO ₂	1
CH_4	25
N ₂ 0	298

1,3-Butadiene Emissions

		Stream Mass Flowrate ¹		DRE ²	Post-Combustio	n VOC Emissions ^{3,4}
Component	CAS No.	(lb/hr)	(tpy)	(%)	(lb/hr)	(tpy)
1,3-Butadiene	106-99-0	3,521	221	98%	70.42	4.42

¹ Annual Stream Mass Flowrate based on 7/2017. Hourly Stream Flowrate based on worst-case operational condition.

² Per TCEQ Best Available Control Technology for Flares and Vapor Combustors (dated, 08/2011), DRE is 99% for certain compounds up to three carbons, 98% otherwise.

³ Example hourly emissions calculations:

Hourly Uncombusted Gas Flare Emissions (lb/hr) = Mass Flowrate (lb/hr) * (1 - DRE/100)

Hourly Uncombusted Gas Emissions from 1,3-Butadiene (lb/hr) = 3521.00 lb (1 - 0.98) = 70.42 lb/hr hr

⁴ Example annual emissions calculations:

Annual Uncombusted Gas Flare Emissions (tpy) = Hourly Waste Gas Emissions (lb/hr) * 8,760 hrs/yr * 1 ton / 2,000 lbs

Annual Uncombusted Gas Emissions (rpy) – nouny mase tas Emissions (rg/n) – (1 - 0.98) = 4.42 tpy yr

TPC Group LLC Houston Plant - Houston, Texas NSR Permit No. 46307 Amendment - BD Unit Expansion Speciated Flows to Flare EPN EP-5 / FIN EP-5

Pilot Gas	Pilot Gas Stream										
EPN	FIN	Compound	CAS No.	Molecular Weight (lb/lb-mole)	Heating Value (MMBtu/lb)	Hourly Mass Flow (lb/hr) ¹	Annual Mass Flow (lb/yr) ²				
EP-5	PROCEMISS	Methane	74-82-8	16.0426	0.022	56.288	493,087				

				Molecular Weight	Heating Value	Hourly Mass Flow	Annual Mass Flow
EPN	FIN	Compound	CAS No.	(lb/lb-mole)	(MMBtu/lb)	(lb/hr) ¹	(lb/yr) ²
EP-5	PROCFLARE	Hydrogen	1333-74-0	2.0159	0.061	2.2	4,614.4
		Nitrogen	7727-37-9	28.014	0.000	332.0	251,170.3
		Methane	74-82-8	16.0426	0.024	1,567.4	395,586.2
		Carbon Monoxide	630-08-0	28.01	0.004	0.0	2,048.8
		Carbon Dioxide	124-38-9	44.009	0.000	22.3	16,901.6
		Ethylene	74-85-1	28.0536	0.021	0.2	348.8
		Ethane	74-84-0	30.0694	0.023	69.7	11,473.4
		Propane	74-98-6	44.0962	0.022	204.0	48,115.3
		Propylene	115-07-1	42.0804	0.023	176.4	49,476.6
		Isobutane	75-28-5	58.123	0.022	4,263.2	2,065,114.9
		n-Butane	106-97-8	58.123	0.023	1,894.7	65,853.9
		Trans-2-butene	624-64-6	56.1072	0.023	923.6	66,219.0
		Cis-2-butene	590-18-1	56.1072	0.023	232.9	8,442.0
		1,3-Butadiene	106-99-0	54.0914	0.021	2,619.3	442,000.0
		1-Butene	106-98-9	56.1072	0.022	3,282.8	366,316.6
		Isobutylene	115-11-7	56.1072	0.023	3,568.0	475,198.0
		Pentane (C5+)	109-66-0	72.1498	0.007	762.3	146,692.1

^{1,2} Annual Stream Mass Flowrate based on 7/2017. Hourly Stream Flowrate based on 8/26/17 09:00 AM.

APPENDIX B: FNSR ANALYSIS

TCEQ Tables 1F-4F TCEQ Table 4N TCEQ Table 6N TCEQ Table 9N

TPC Group LLC Houston Plant - Houston, Texas BD Expansion Project Emissions Increase Summary

EPN	FIN	Dormit	Description of Units	CO	NO _X	РМ	PM ₁₀	PM _{2.5}	VOC	SO ₂	CO2e
EPN	FIN	Permit	Description of Units	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)		(tpy)
New Units											
FUG-BD-V	FUG-BD-V	46307	Process Fugitives						1.18		ļ
FUG-BD-D	FUG-BD-D	22052	Docks Fugitives						0.12		
TK-2D6	TK-2D6	46307 46307	IFR MTBE/ETBE/DIB/IC8 Tank TK-2D6 Degass Flare	0.01	0.00				1.16 0.02	0.00	((7
MSS-FLR MSS-BD	MSS-FLR MSS-BD	46307	Vessel Openings	0.01	0.00				0.02	0.00	6.67
DOCK-TO	DOCK-TO	22052	Dock Thermal Oxidizer	2.75	3.67	1.37	1.37	1.37	1.84	0.08	6,754
Boiler 12	Boiler 12	46426	Boiler 12	21.49	29.08	21.67	21.67	21.67	8.96	3.26	267,734
Increases for New				24.25	32.75	23.04	23.04	23.04	14.18	3.34	274,494
Modified Units				1	02.10					0.01	
C-5	01027	22052	Ship & Barge Loading Dock						0.00		
F-CT-10	F-CT-10	46307	Cooling Tower CT-10			0.00	0.00	0.00	0.70		[
T-115	TT-115	46307	TANK STORAGE						0.00		
T-81	T-81	46307	No. 81 Tank						0.00		
T-82	T-82	46307	No. 82 Tank						0.74		
T-86	T-86	46307	No. 86 Tank						0.00		
Increases for Mod	ified Units			0.00	0.00	0.00	0.00	0.00	1.44	0.00	0.00
Affected Units (BA	E to PTE)										
EP-5	Multiple	46307	Plant Flare Total	10.20	2.27				22.85	0.00	
F-CT-3	CT-3	46307	COOLING TOWER 3			0.55	0.35	0.01	4.98		
F-CT-7	CT-7	46307	COOLING TOWER 7			0.00	0.00	0.00	2.25		
F-CT-11	F-CT-11	46307	Cooling Tower CT-11			0.00	0.00	0.01	0.15		
F-CT-17	CT-17	46307	Cooling Tower CT-17			1.60	1.09	0.01	6.71		
F-CT-18	CT-18	46307	Cooling Tower CT-18			1.21	0.85	0.01	5.20		
F-CT-14	F-CT-14	46307	Cooling Tower CT-14			0.02	0.00	0.01	3.39		
WW-IDS	WW-IDS	46307	Wastewater Drains System						1.92		ļ
WW-PN	WW-PN	46307	Wastewater Aeration Ponds						3.70		
F-10A	OIL SEP	46307	OIL SEPARATOR						0.80		l
F-TTR	TRUCK-RACK LOAD-GRP	46307	TRUCK RACK LOADING FACILITY						0.14		
LOAD-GRP		46307	Loading Emissions Cap Tank 87						0.00		
T-87	T-87	22052							0.46		
T-32 T-36	T-32 T-36	46307 46307	No. 32 Tank DIB Storage Tank 36						0.00		
T-36 T-37	T-37	46307	DIB Storage Tank 37						0.12		
T-71	T-71	46307	NO. 71 TANK						0.14		
T-72	T-72	46307	NO. 72 TANK						0.20		
T-73	T-73	46307	NO. 73 TANK						0.00		
T-74	T-74	46307	NO. 74 TANK						0.00		
T-80	T-80	46307	NO. 80 TANK						1.85		
T-103	TT-103	46307	TANK STORAGE						0.11		
T-114	TT-114	46307	TANK STORAGE						0.00		
2F26	2F26	46307	Furfural Sump Tank						0.01		
4F14	4F14	46307	Furfural Sump Tank						0.01		
5F3	5F3	46307	Furfural Sump Tank						0.01		
T-P1WW1	T-P1WW1	46307	T-P1WW1						0.01		
T-P1WW2	T-P1WW2	46307	TANK T-P1WW2						0.01		
T-P2WW1	T-P2WW1	46307	TANK T-P2WW1						0.01		
T-31	T-31	46307	No. 31 Tank						0.29		
T-33	T-33	46307	No. 33 Tank						0.00		
T-34	T-34	46307	No. 34 Tank						0.26		
T-69-1	T-69-1	46307	No. 69-1 Tank						0.01		
T-77	T-77	46307	NO. 77 TANK						0.05		
T-78	T-78	46307	NO. 78 TANK						0.05		
T-79	T-79	46307	NO. 79 TANK						0.21		
T-84	T-84	46307	No. 84 Tank						0.00		
T-85	T-85	46307	No. 85 Tank						0.00		
T-111	T-111	46307	Tank						0.01		
T-112	T-112	46307	Tank						0.01		
TNK-GRP	TNK-GRP	46307	Tank Emissions Cap						0.00		
T-155	T-155	46307	TEA Storage Tank						0.01		
1F-511	1F-511	46307	Tank						0.01		
Increases for Affec	cted Units			10.20	2.27	3.39	2.30	0.04	56.38	0.00	0.00
				a : - :		aa - :				0.5.1	0=4 :-:
	Permits Increases			24.25	32.75	23.04	23.04	23.04	15.61	3.34	274,494
Project Emissions	Increase cant Emission Rate			34.45	35.02	26.42	25.34	23.08	71.99	3.34	274,494
PSD/NNSR Signific PSD/NNSR Netting				100 No	25 Yes	25 Yes	15 Yes	10 Yes	25 No	40 No	75,000 No
	Emissions Change			NO	Yes -290.38	Yes 24.84	Yes 24.05	Yes 21.95	N0	NO 	No
Net Emissions Inci					-290.38	24.84 51.26	49.38	45.03			
PSD/NNSR Review	. ,			No	-255.50 No	Yes	49.38 Yes	45.05 Yes	Yes	No	Yes
1 3D/ NINSK KEVIEW	nequileu:	NU	110	res	res	res	res	NU	res		

TABLE 1F AIR QUALITY APPLICATION SUPPLEMENT

Permit No.: 46307, 46426, 22052	No.: 46307, 46426, 22052 Application Submittal Date: February 2020											
Company: TPC Group LLC												
RN: 100219526	Facility Location: Ho	iston Plant										
City: Houston	County: Harris											
Permit Unit I.D.: HNO	Permit Name: VERP	(46307), Cogei	n (46426), Do	ocks (22052)								
Permit Activity: New Source x Modification												
Complete for all Pollutants with a Project Emission I	ncrease.	POLLUTANTS										
		Oz	one			1						
		VOC	NOx	со	РМ	PM ₁₀	PM _{2.5}	SO ₂	GHG (CO2e)			
Nonattainment?		Yes	Yes	No	No	No	No	No	No			
PSD?		No	No	Yes	Yes	Yes	Yes	Yes	Yes			
Existing site PTE (tpy)?	>50	>50	>100	>100	>100	>100	45.8	>75,000				
		71.99	35.02	34.45	26.42	25.34	23.08	3.34	274,494			
Proposed project emission increases (tpy from 2F[2])?												
Is the existing site a major source?		Yes	Yes	Yes	Yes	Yes	Yes	No	Yes			
If not, is the project a major source by itself?								No				
If site is major source, is project increase significant?		Yes	Yes	No	Yes	Yes	Yes	No	Yes			
If netting required, estimated start of construction: Subm	ittal Date February 2020											
5 years prior to start of construction contemporaneous: J	anuary 2015											
Estimated start of operation period: February 2020												
Net contemporaneous change, including proposed projec	t, from Table 3F. (tpy)		-255.36	-	51.26	49.38	45.03					
Major NSR Applicable?		Yes	No	No	Yes	Yes	Yes	No	Yes			
Signature:	Title:			Date:								

¹ Other pollutants. [Pb, H2S, TRS, H2SO4, Fluoride excluding HF, etc.]

² Sum of proposed emissions minus baseline emissions, increases only. The representations made above and on the accompanying tables are true and correct to the best of my knowledge.

Pollutant ¹ :	СО				Permit:	46307, 46426,	22052			
Baseline Period:			2017	to	2018					
					А	В				
Affected o	r Modified Fac	ilities ²		Actual	Baseline	Proposed	Projected Actual	Difference		Project
	FIN	EPN	Permit No.	Emissions ³	Emissions ⁴	Emissions ⁵	Emissions	(B-A) ⁶	Correction ⁷	Increase ⁸
1	EP-5	EP-5	46307/22052	7.31	7.31	17.51		10.20		10.20
2	MSS-FLR	MSS-FLR	46307	0.00	0.00	0.01		0.01		0.01
3	DOCK-TO	DOCK-TO	22052	0.00	0.00	2.75		2.75		2.75
4	Boiler 12	Boiler 12	46426	0.00	0.00	21.49		21.49		21.49
	·							Page Subtotal ⁹		34.45

¹ Individual Table 2Fs should be used to summarize the project emission increase for each criteria pollutant.

² Emission Point Number as designated in NSR Permit or Emissions Inventory.

³ All records and calculations for these values must be available upon request. Actual emissions are capped at allowable limits.

⁴ Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.

⁵ If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement.

⁶ Proposed Emissions (column B) minus Baseline Emissions (column A).

⁷ Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate must be provided in the Table 2F supplement.

⁸ Obtained by subtracting the correction from the difference. Must be a positive number.

⁹ Sum all values for this page.

¹⁰Type of note. Generally would be baseline adjustment, basis for projected actual, or basis for correction (what could have been accommodated).

Pollutant':	NO _x				Permit:	46307, 46426,	22052			
Baseline Period:			2017	to	2018					
					А	В				
Affected or	r Modified Fac	ilities ²		Actual	Baseline	Proposed	Projected Actual	Difference		Project
	FIN	EPN	Permit No.	Emissions ³	Emissions ⁴	Emissions ⁵	Emissions	(B-A) ⁶	Correction ⁷	Increase ⁸
1	EP-5	EP-5	46307/22052	1.17	1.17	3.44		2.27		2.27
2	MSS-FLR	MSS-FLR	46307	0.00	0.00	0.00		0.00		0.00
3	DOCK-TO	DOCK-TO	22052	0.00	0.00	3.67		3.67		3.67
4	Boiler 12	Boiler 12	46426	0.00	0.00	29.08		29.08		29.08
								Page Subtotal ⁹		35.02

¹Individual Table 2Fs should be used to summarize the project emission increase for each criteria pollutant.

² Emission Point Number as designated in NSR Permit or Emissions Inventory.

³ All records and calculations for these values must be available upon request. Actual emissions are capped at allowable limits.

⁴ Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.

⁵ If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement.

⁶ Proposed Emissions (column B) minus Baseline Emissions (column A).

⁷ Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate must be provided in the Table 2F supplement.

⁸ Obtained by subtracting the correction from the difference. Must be a positive number.

⁹ Sum all values for this page.

Pollutant ¹ :	PM				Permit:	46307, 46426,	22052			
Baseline Period:			2017	to	2018					
					А	В				
Affected o	r Modified Fac	ilities ²		Actual	Baseline	Proposed	Projected Actual	Difference		Project
	FIN	EPN	Permit No.	Emissions ³	Emissions ⁴	Emissions ⁵	Emissions	$(B-A)^{6,10}$	Correction ⁷	Increase ⁸
1	CT-3	F-CT-3	46307	2.95	2.95	3.50		0.55		0.55
2	CT-7	F-CT-7	46307	0.46	0.46	0.46		0.00		0.00
3	CT-10	F-CT-10	46307	0.21	0.21	0.15		-0.06		0.00
4	CT-11	F-CT-11	46307	0.05	0.05	0.05		0.003		0.00
5	CT-14	F-CT-14	46307	0.32	0.32	0.34		0.02		0.02
6	CT-17	F-CT-17	46307	1.53	1.53	3.13		1.60		1.60
7	CT-18	F-CT-18	46307	1.18	1.18	2.39		1.21		1.21
8	DOCK-TO	DOCK-TO	22052	0.00	0.00	1.37		1.37		1.37
9	Boiler 12	Boiler 12	46426	0.00	0.00	21.67		21.67		21.67
	*	•			•	•]	Page Subtotal ⁹		26.42

¹ Individual Table 2Fs should be used to summarize the project emission increase for each criteria pollutant.

² Emission Point Number as designated in NSR Permit or Emissions Inventory.

³ All records and calculations for these values must be available upon request. Actual emissions are capped at allowable limits.

⁴ Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.

⁵ If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement.

⁶ Proposed Emissions (column B) minus Baseline Emissions (column A).

⁷ Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate must be provided in the Table 2F supplement.

⁸ Obtained by subtracting the correction from the difference. Must be a positive number.

⁹ Sum all values for this page.

¹⁰ A negative B-A Difference indicates a new proposed emission rate lower than the current allowable, therefore the Project Increase is set equal to 0.

TABLE 2F
PROJECT EMISSION INCREASE

Pollutant ¹ :	PM10				Permit:	46307, 46426,	, 22052			
Baseline Period:			2017	to	2018					
					А	В				
Affected o	Affected or Modified Facilities ²			Actual	Baseline	Proposed	Projected Actual	Difference	Correction ⁷	Project
	FIN	EPN		Emissions ³	Emissions ⁴	Emissions ⁵	Emissions	$(B-A)^{6,10}$	Correction	Increase ⁸
1	CT-3	F-CT-3	46307	2.24	2.24	2.59		0.35		0.35
2	CT-7	F-CT-7	46307	0.34	0.34	0.34		0.00		0.00
3	CT-10	F-CT-10	46307	0.16	0.16	0.11		-0.05		0.00
4	CT-11	F-CT-11	46307	0.04	0.04	0.04		0.00		0.00
5	CT-14	F-CT-14	46307	0.25	0.25	0.25		0.00		0.00
6	CT-17	F-CT-17	46307	1.23	1.23	2.32		1.09		1.09
7	CT-18	F-CT-18	46307	0.92	0.92	1.77		0.85		0.85
8	DOCK-TO	DOCK-TO	22052	0.00	0.00	1.37		1.37		1.37
9	Boiler 12	Boiler 12	46426	0.00	0.00	21.67		21.67		21.67
	•]	Page Subtotal ⁹		25.34

¹ Individual Table 2Fs should be used to summarize the project emission increase for each criteria pollutant.

² Emission Point Number as designated in NSR Permit or Emissions Inventory.

³ All records and calculations for these values must be available upon request. Actual emissions are capped at allowable limits.

⁴ Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.

⁵ If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement.

⁶ Proposed Emissions (column B) minus Baseline Emissions (column A).

⁷ Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate must be provided in the Table 2F supplement.

⁸ Obtained by subtracting the correction from the difference. Must be a positive number.

⁹ Sum all values for this page.

¹⁰ A negative B-A Difference indicates a new proposed emission rate lower than the current allowable, therefore the Project Increase is set equal to 0.

TABLE 2F
PROJECT EMISSION INCREASE

Pollutant':	PM _{2.5}				Permit:	46307, 46426,	, 22052			
Baseline Period:			2017	to	2018					
					А	В				
Affected o	r Modified Fac	ilities ²	Permit No.	Actual	Baseline	Proposed	Projected	Difference	a	Project
	FIN	EPN		Emissions ³	Emissions ⁴	Emissions ⁵	Actual Emissions	(B-A) ⁶	Correction ⁷	Increase ⁸
1	CT-3	F-CT-3	46307	0.00	0.00	0.01		0.01		0.01
2	CT-7	F-CT-7	46307	0.01	0.01	0.01		0.00		0.00
3	CT-10	F-CT-10	46307	0.00	0.00	3.42E-04		0.00		3.42E-04
4	CT-11	F-CT-11	46307	0.00	0.00	0.01		0.01		0.01
5	CT-14	F-CT-14	46307	0.00	0.00	0.01		0.01		0.01
6	CT-17	F-CT-17	46307	0.00	0.00	0.01		0.01		0.01
7	CT-18	F-CT-18	46307	0.00	0.00	0.01		0.01		0.01
8	DOCK-TO	DOCK-TO	22052	0.00	0.00	1.37		1.37		1.37
9	Boiler 12	Boiler 12	46426	0.00	0.00	21.67		21.67		21.67
	•		•		•		.]	Page Subtotal ⁹		23.08

¹ Individual Table 2Fs should be used to summarize the project emission increase for each criteria pollutant.

² Emission Point Number as designated in NSR Permit or Emissions Inventory.

³ All records and calculations for these values must be available upon request. Actual emissions are capped at allowable limits.

⁴ Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.

⁵ If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement.

⁶ Proposed Emissions (column B) minus Baseline Emissions (column A).

⁷ Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate must be provided in the Table 2F supplement.

⁸ Obtained by subtracting the correction from the difference. Must be a positive number.

⁹ Sum all values for this page.

Pollutant¹: VOC 46307, 46426, 22052 Permit: **Baseline Period:** 2017 2018 to Α В Permit No. Projected Affected or Modified Facilities² Actual Baseline Proposed Project Difference Actual Correction⁷ Emissions³ Emissions⁴ Emissions⁵ Increase⁸ EPN¹¹ FIN Emissions $(B-A)^{6,10}$ EP-5 EP-5 46307/22052 14.00 14.00 36.85 22.85 22.85 1 ---2 CT-3 F-CT-3 46307 5.02 5.02 9.99 4.98 4.98 ---3 CT-7 F-CT-7 0.38 0.38 2.63 2.25 2.25 46307 ---4 CT-10 F-CT-10 46307 0.22 0.22 0.92 0.70 0.70 ---5 0.15 0.15 CT-11 F-CT-11 46307 0.00 0.00 0.15 ---3.39 3.39 6 CT-14 F-CT-14 0.47 46307 0.47 3.86 ---F-CT-17 7 CT-17 46307 6.71 6.71 2.23 2.23 8.94 ---F-CT-18 8 CT-18 46307 5.20 5.20 1.64 1.64 6.84 ---0.14 0.14 9 TRUCK-RACK F-TTR 46307 0.12 0.12 0.26 ---10 0.00 0.00 LOAD-GRP LOAD-GRP 46307 1.94 1.94 1.94 ---0.01 0.01 11 T-P1WW1 T-P1WW1 46307 0.00 0.00 0.01 ---12 0.01 0.01 T-P1WW2 T-P1WW2 46307 0.00 0.00 0.01 ---13 T-P2WW1 T-P2WW1 46307 0.00 0.00 0.01 0.01 0.01 ---14 T-31 T-31 46307 0.33 0.33 0.62 0.29 0.29 ---15 T-32 T-32 0.32 0.32 0.00 0.00 46307 0.32 ---T-33 T-33 0.00 0.00 16 46307 0.01 0.01 0.01 ---17 T-34 T-34 0.26 0.26 46307 0.02 0.02 0.28 ---18 0.12 0.12 T-36 T-36 46307 0.12 0.12 0.23 ---19 0.14 0.14 T-37 T-37 0.09 0.09 0.23 46307 ---20 0.01 0.01 T-69-1 T-69-1 46307 0.00 0.00 0.01 ---0.20 0.20 21 T-71 T-71 46307 0.71 0.71 0.91 ---22 0.44 0.44 T-72 T-72 46307 0.41 0.41 0.84 ---23 0.00 0.00 T-73 T-73 46307 1.41 1.41 1.41 ---0.00 24 T-74 T-74 46307 1.41 1.41 1.41 0.00 ---25 T-77 T-77 46307 0.23 0.23 0.28 0.05 0.05 ---26 T-78 T-78 46307 0.23 0.23 0.28 0.05 0.05 ---27 T-79 T-79 0.08 0.08 0.29 0.21 0.21 46307 ---28 T-80 T-80 46307 0.13 0.13 1.98 1.85 1.85 ---29 T-81 T-81 0.06 -0.05 0.00 46307 0.06 0.01 ---30 T-82 0.74 0.74 T-82 46307 0.14 0.14 0.88 ---

TABLE 2FPROJECT EMISSION INCREASE

Pollutant ¹ :	VOC				Permit:	46307, 46426,	22052			
Baseline Period:			2017	to	2018					
					А	В				
Affect	Affected or Modified Facilities ²			Actual	Baseline	Proposed	Projected Actual	Difference	Connection ⁷	Project
	FIN	EPN ¹¹		Emissions ³	Emissions ⁴	Emissions ⁵	Emissions	(B-A) ^{6, 10}	Correction'	Increase ⁸
								Page Subtotal ⁹		50.76

Pollutant¹: VOC 46307, 46426, 22052 Permit: **Baseline Period:** 2017 2018 to Α В Permit No. Projected Affected or Modified Facilities² Actual Baseline Proposed Project Difference Actual Correction⁷ Emissions³ Emissions⁴ Emissions⁵ Increase⁸ EPN¹¹ FIN Emissions (B-A)^{6, 10} 31 T-84 T-84 46307 0.59 0.59 0.59 0.00 0.00 ---32 T-85 T-85 46307 0.01 0.01 0.01 0.00 0.00 ---33 T-86 T-86 46307 0.04 0.04 0.01 -0.03 0.00 ---34 TT-103 T-103 46307 1.23 1.23 1.35 0.11 0.11 ---35 T-111 0.01 0.01 T-111 46307 0.00 0.00 0.01 ---36 T-112 T-112 0.01 0.01 46307 0.00 0.01 0.00 ---37 0.00 0.00 TT-114 T-114 46307 1.17 1.17 1.17 ---0.00 38 T-115 0.00 TT-115 46307 1.17 1.17 1.17 ---39 0.00 0.00 TNK-GRP TNK-GRP 46307 1.34 1.34 1.34 ---40 0.01 0.01 T-155 T-155 46307 0.00 0.00 0.01 ---41 0.01 0.01 1F-511 1F-511 46307 0.00 0.00 0.01 ---42 2F26 2F26 0.01 0.01 46307 0.00 0.00 0.01 ---43 4F14 4F14 46307 0.00 0.00 0.01 0.01 0.01 ---44 5F3 5F3 46307 0.00 0.00 0.01 0.01 0.01 ---45 OIL SEP F-10A 0.80 0.80 46307 0.00 0.00 0.80 ---WW-IDS WW-IDS 1.92 1.92 46 46307 1.92 1.92 3.84 ---47 WW-PN WW-PN 6.54 3.70 3.70 46307 2.84 2.84 ---48 C-5 -1.02 0.00 01027 1.23 22052 1.23 0.21 ---49 0.46 0.46 T-87 T-87 22052 0.14 0.14 0.60 ---50 FUG-BD-V FUG-BD-V 1.18 1.18 46307 0.00 0.00 1.18 ---51 FUG-BD-D FUG-BD-D 0.12 0.12 22052 0.00 0.00 0.12 ---52 TK-2D6 46307 0.00 0.00 1.16 1.16 TK-2D6 1.16 ---53 0.02 0.02 0.02 MSS-FLR MSS-FLR 46307 0.00 0.00 ---54 MSS-BD MSS-BD 0.89 0.89 0.89 46307 0.00 0.00 ---55 DOCK-TO DOCK-TO 22052 0.00 0.00 1.84 1.84 1.84 ---56 Boiler 12 Boiler 12 46426 0.00 0.00 8.96 8.96 ---8.96 21.24 Page Subtotal⁹ ---Total 71.99 ---

TABLE 2FPROJECT EMISSION INCREASE

¹ Individual Table 2Fs should be used to summarize the project emission increase for each criteria pollutant.

² Emission Point Number as designated in NSR Permit or Emissions Inventory.

Pollutant ¹ :	VOC				Permit:	46307, 46426,	22052			
Baseline Period:			2017	to	2018					
					А	В				
Affect	Affected or Modified Facilities ²			Actual	Baseline	Proposed	Projected Actual	Difference	Correction ⁷	Project
	FIN	EPN ¹¹		Emissions ³	Emissions ⁴	Emissions ⁵	Emissions	(B-A) ^{6, 10}	Correction	Increase ⁸

³ All records and calculations for these values must be available upon request. Actual emissions are capped at allowable limits.

⁴ Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.

⁵ If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement.

⁶ Proposed Emissions (column B) minus Baseline Emissions (column A).

⁷ Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate must be provided in the Table 2F supplement.

⁸ Obtained by subtracting the correction from the difference. Must be a positive number.

⁹ Sum all values for this page.

¹⁰ A negative B-A Difference indicates a new proposed emission rate lower than the current allowable, therefore the Project Increase is set equal to 0.

¹¹ Caps: EPN LOAD-GRP includes the following EPNS: E-PIBTT, E-PIBTC, E-PIB1RC1, E-PIB1RC2, E-PIB2RC1, E-PIB2RC2, E-PIB2TT1 and E-PIB2TT2. EPN TNK-GRP includes the following EPNS: T-117, T-118, T-119, T-204, T-205, and T206.

Pollutant':	SO ₂				Permit:	46307, 46426,	22052			
Baseline Period:			2017	to	2018					
					А	В				
Affected or	r Modified Fac	ilities ²	Permit No.	Actual	Baseline	Proposed	Projected Actual	Difference	Correction ⁷	Project
	FIN	EPN		Emissions ³	Emissions ⁴	Emissions ⁵	Emissions	(B-A) ⁶	Correction	Increase ⁸
1	EP-5	EP-5	46307/22052	0.01	0.01	6.08E-06		-0.01		0.00
2	MSS-FLR	MSS-FLR	46307	0.00	0.00	0.00		0.00		0.00
3	DOCK-TO	DOCK-TO	22052	0.00	0.00	0.08		0.08		0.08
4	Boiler 12	Boiler 12	46426	0.00	0.00	3.26		3.26		3.26
]	Page Subtotal ⁹		3.34

¹Individual Table 2Fs should be used to summarize the project emission increase for each criteria pollutant.

² Emission Point Number as designated in NSR Permit or Emissions Inventory.

³All records and calculations for these values must be available upon request. Actual emissions are capped at allowable limits.

⁴ Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.

⁵ If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement.

⁶ Proposed Emissions (column B) minus Baseline Emissions (column A).

⁷ Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate must be provided in the Table 2F supplement.

⁸ Obtained by subtracting the correction from the difference. Must be a positive number.

⁹ Sum all values for this page.

Pollutant ¹ :	GHG				Permit:	46307, 46426,	22052			
Baseline Period:			2017	to	2018					
					Α	В				
Affected or Modified Facilities ²			Permit No.	Actual	Baseline	Proposed	Projected Actual	Difference	Connection ⁷	Project
	FIN	EPN		Emissions ³	Emissions ⁴	Emissions ⁵	Emissions	(B-A) ⁶	Correction'	Increase ⁸
1	MSS-FLR	MSS-FLR	46307	0.00	0.00	6.67		6.67		6.67
2	DOCK-TO	DOCK-TO	22052	0.00	0.00	6,754		6753.91		6753.91
3	Boiler 12	Boiler 12	46426	0.00	0.00	267,734		267733.66		267733.66
]	Page Subtotal ⁹		274,494

¹Individual Table 2Fs should be used to summarize the project emission increase for each criteria pollutant.

² Emission Point Number as designated in NSR Permit or Emissions Inventory.

³ All records and calculations for these values must be available upon request.

⁴ Correct actual emissions for currently applicable rule or permit requirements, and periods of non-compliance. These corrections, as well as any MSS previously demonstrated under 30 TAC 101, should be explained in the Table 2F supplement.

⁵ If projected actual emission is used it must be noted in the next column and the basis for the projection identified in the Table 2F supplement.

⁶ Proposed Emissions (column B) minus Baseline Emissions (column A).

⁷ Correction made to emission increase for what portion could have been accommodated during the baseline period. The justification and basis for this estimate must be provided in the Table 2F supplement.

⁸ Obtained by subtracting the correction from the difference. Must be a positive number.

⁹ Sum all values for this page.

TABLE 3F PROJECT CONTEMPORANEOUS CHANGES

pplication Number: 4	46307, 46426, 22052					Criteria Pollutant: NOX A B				
Project Date ²	Facility at Which Emission Change Occurred ³ FIN EPN		Permit No.	Project Name or Activity	Baseline Period (years)	Proposed Emissions	Baseline Emissions	Difference (A-B) ⁶	Creditab Decrease	
						(tons/year) ⁴	(tons/year) ⁵		Increase	
3/13/2015	Various	EP-5	PBR 129453	New POLYISOBUTYLENE 3 (PIB-3) UNIT	N/A	0.02	0.00	0.02	0.02	
7/8/2015	Boiler 10	Boiler 10	NSR 46426	Renewal and authorized VAU, DH2, and plant offgas for Boilers 10 and 11, and added a VOC cap for Boilers 10 and 11	2010-2011	55.50	28.47	27.03	27.03	
7/8/2015	Boiler 11	Boiler 11	NSR 46426	Renewal and authorized VAU, DH2, and plant offgas for Boilers 10 and 11, and added a VOC cap for Boilers 10 and 11	2010-2011	55.50	29.12	26.38	26.38	
1/25/2018	TEMP-FLR	TEMP-FLR	Standard Permit 149663	TEMPORARY FLARE PROJECT	N/A	3.08	0.00	3.08	3.08	
3/14/2018	Various	EB-1B-505	NSR 19806	Update emissions calculations for EB-1B-505 and modify EB-1B-2501 calculations due to change in firing rate	2015-2016	76.87	31.13	45.74	45.74	
3/14/2018	Various	EB-1B-2501	NSR 19806	Update emissions calculations for EB-1B-505 and modify EB-1B-2501 calculations due to change in firing rate	2015-2016	12.88	7.38	5.50	5.50	
1/30/2019	Boiler 10 or Boiler 11	Boiler 10 or Boiler 11	PBR 154654	Initial PBR for degassing railcars prior to maintenance activities	N/A	0.43	0.00	0.43	0.43	
TBD	BLR-9	EP-H9	NSR 46426	BD Unit Amendment	2017-2018	0.00	398.56	-398.56	-398.5	
nmary of Contempor	aneous Changes	Conte	mporaneous Period:	1/1/2015	to	1/1/2020		Total	-290.3	

¹ Individual Table 3Fs should be used to summarize the project emission increase and net emission increase for each criteria pollutant.

² The permit issuance date for the modified or new facilities. Attach Table 4F for each project reduction claimed.

³ Emission Point No. as designated in NSR Permit or Emissions Inventory.

⁴ All records and calculations for these values must be available upon request.

⁵ All records and calculations for these values must be available upon request.

⁶ Proposed (column A) - Baseline (column B).

⁷ If portion of the decrease not creditable, enter creditable amount.

⁸ Sum all values for this page.

TABLE 3F PROJECT CONTEMPORANEOUS CHANGES

any: TPC Group LLC									
it Application Number:	46307, 46426, 22052					Criteria Pollutant:			
Project Date ²	ct Date ² Facility at Which Emission Chan Occurred ³		Permit No.	Project Name or Activity	Baseline Period (years)	A Proposed Emissions	B Baseline Emissions	Difference (A-B) ⁶	Creditable Decrease o
	FIN	EPN			• ·	(tons/year) ⁴	(tons/year) ⁵	. ,	Increase ⁷
3/13/2015	E-PIB3CTWR	E-PIB3CTWR	PBR 129453	New POLYISOBUTYLENE 3 (PIB-3) UNIT	N/A	0.37	0.00	0.37	0.37
7/8/2015	Boiler 10	Boiler 10	NSR 46426	Renewal and authorized VAU, DH2, and plant offgas for Boilers 10 and 11, and added a VOC cap for Boilers 10 and 11	2010-2011	20.7	12.96	7.74	7.74
7/8/2015	Boiler 11	Boiler 11	NSR 46426	Renewal and authorized VAU, DH2, and plant offgas for Boilers 10 and 11, and added a VOC cap for Boilers 10 and 11	2010-2011	20.7	12.95	7.75	7.75
2/17/2016	CT-17	F-CT-17	PBR 138859	Cooling Tower CT-17 and CT-18 Rebuild/Replacement	N/A	1.56	0.00	1.56	1.56
2/17/2016	CT-18	F-CT-18	PBR 138859	Cooling Tower CT-17 and CT-18 Rebuild/Replacement	N/A	1.2	0.00	1.20	1.20
5/23/2017	CT-14	F-CT-14	PBR 146289	Shutdown Cooling Tower 14	2014-2015	0	0.56	-0.56	-0.56
5/23/2017	CT-14	F-CT-14	PBR 146289	Authorized additional service of MeOH rich water in tanks T-73 and T- 74 using 106.261 and authorized replacing cooling tower F-CT-14 under 106.371	N/A	0.34	0.00	0.34	0.34
1/16/2018	CT-14	F-CT-14	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0	Included above in PBR 146289 Included above in PBR 138859 Included above in PBR 138859		
1/16/2018	CT-17	F-CT-17	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0			
1/16/2018	CT-18	F-CT-18	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0			
3/14/2018	Various	EB-1B-505	NSR 19806	Update emissions calculations for EB-1B-505 and modify EB-1B- 2501 calculations due to change in firing rate	2015-2016	29	9.00	20.00	20.00
3/14/2018	Various	EB-1B-2501	NSR 19806	Update emissions calculations for EB-1B-505 and modify EB-1B- 2501 calculations due to change in firing rate	2015-2016	3.2	1.83	1.37	1.37
1/30/2019	Boiler 10 or Boiler 11	11	PBR 154654	Initial PBR for degassing railcars prior to maintenance activities	N/A	0.16	0.00	0.16	0.16
TBD	BLR-9	EP-H9	NSR 46426	BD Unit Amendment	2011-2012	0	15.08	-15.08	-15.08
Summary of Contempo	raneous Changes	Contem	poraneous Period:	1/1/2015	to	1/1/2020		Total	24.8

¹ Individual Table 3Fs should be used to summarize the project emission increase and net emission increase for each criteria pollutant.

² The permit issuance date for the modified or new facilities. Attach Table 4F for each project reduction claimed.

³ Emission Point No. as designated in NSR Permit or Emissions Inventory.

⁴All records and calculations for these values must be available upon request.

⁵ All records and calculations for these values must be available upon request.

⁶ Proposed (column A) - Baseline (column B).

⁷ If portion of the decrease not creditable, enter creditable amount.

8 Sum all values for this page.

TABLE 3F PROJECT CONTEMPORANEOUS CHANGES

any: TPC Group LLC										
t Application Number: 4	6307, 46426, 22052					Criteria Pollutant:	PM10			
						Α	В			
Project Date ²	Facility at Which Emission Change Occurred ³		Permit No.	Project Name or Activity	Baseline Period (years)	Proposed Emissions (tons/year) ⁴	Baseline Emissions (tons/year) ⁵	Difference (A-B) ⁶	Creditable Decrease or Increase ⁷	
	FIN	EPN								
3/13/2015	E-PIB3CTWR	E-PIB3CTWR	PBR 129453	New POLYISOBUTYLENE 3 (PIB-3) UNIT	N/A	0.24	0.00	0.24	0.24	
7/8/2015	Boiler 10	Boiler 10	NSR 46426	6 Renewal and authorized VAU, DH2, and plant offgas for Boilers 10 and 11, and added a VOC cap for Boilers 10 and 11 2010-2011 20.7 12.96 7.74			7.74	7.74		
7/8/2015	Boiler 11	Boiler 11	NSR 46426	Renewal and authorized VAU, DH2, and plant offgas for Boilers 10 and 11, and added a VOC cap for Boilers 10 and 11	2010-2011	20.7	12.95 7.75 7.7			
2/17/2016	CT-17	F-CT-17	PBR 138859	59 Cooling Tower CT-17 and CT-18 Rebuild/Replacement N/A 1.16 0.00 1.1						
2/17/2016	CT-18	F-CT-18	PBR 138859	859 Cooling Tower CT-17 and CT-18 Rebuild/Replacement N/A 0.89 0.00					0.89	
5/23/2017	CT-14	F-CT-14	PBR 146289	Shutdown Cooling Tower 14	2014-2015	0	0.42	-0.42	-0.42	
5/23/2017	CT-14	F-CT-14	PBR 146289	Authorized additional service of MeOH rich water in tanks T-73 and T- 74 using 106.261 and authorized replacing cooling tower F-CT-14 under 106.371	N/A	0.25	0.00	0.00 0.25		
1/16/2018	CT-14	F-CT-14	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0	Included above in PBR 146289			
1/16/2018	CT-17	F-CT-17	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0	Inclu	ded above in PBR 13	8859	
1/16/2018	CT-18	F-CT-18	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0	Inclue	Included above in PBR 138859		
3/14/2018	Various	EB-1B-505	NSR 19806	Update emissions calculations for EB-1B-505 and modify EB-1B-2501 calculations due to change in firing rate	2015-2016	29	9.00	20.00	20.00	
3/14/2018	Various	EB-1B-2501	NSR 19806	Update emissions calculations for EB-1B-505 and modify EB-1B-2501 calculations due to change in firing rate	2015-2016	3.2	1.83	1.37	1.37	
1/30/2019	Boiler 10 or Boiler 11	Boiler 10 or Boiler 11	PBR 154654	Initial PBR for degassing railcars prior to maintenance activities	N/A	0.16	0.00	0.16	0.16	
TBD	BLR-9	EP-H9	NSR 46426	BD Unit Amendment	2011-2012	0	15.08	-15.08	-15.08	
Summary of Contempor	aneous Changes	Conten	poraneous Period:	1/1/2015	to	1/1/2020		Total	24.0	

¹ Individual Table 3Fs should be used to summarize the project emission increase and net emission increase for each criteria pollutant.

² The permit issuance date for the modified or new facilities. Attach Table 4F for each project reduction claimed.

³ Emission Point No. as designated in NSR Permit or Emissions Inventory.

⁴ All records and calculations for these values must be available upon request.

⁵ All records and calculations for these values must be available upon request.

⁶ Proposed (column A) - Baseline (column B).

⁷ If portion of the decrease not creditable, enter creditable amount.

⁸ Sum all values for this page.

TABLE 3F PROJECT CONTEMPORANEOUS CHANGES

pany: TPC Group LLC	1/2017 1/12/ 20072					<u></u>	D) (2 5		
nit Application Number:	46307, 46426, 22052					Criteria Pollutant: A	PM2.5 B		
Project Date ²	Facility at Which I Occurred ³ FIN	Emission Change EPN	Permit No.	Project Name or Activity	Baseline Period (years)	Proposed Emissions (tons/year) ⁴	Baseline Emissions (tons/year) ⁵	Difference (A-B) ⁶	Creditable Decrease or Increase ⁷
3/13/2015	E-PIB3CTWR	E-PIB3CTWR	PBR 129453	New POLYISOBUTYLENE 3 (PIB-3) UNIT	N/A	1.00E-03	0	1.00E-03	1.00E-03
7/8/2015	Boiler 10	Boiler 10	NSR 46426	Renewal and authorized VAU, DH2, and plant offgas for Boilers 10 and 11, and added a VOC cap for Boilers 10 and 11	2010-2011	20.7	12.96	7.74	7.74
7/8/2015	Boiler 11	Boiler 11	NSR 46426	Renewal and authorized VAU, DH2, and plant offgas for Boilers 10 and 11, and added a VOC cap for Boilers 10 and 11	2010-2011	20.7	12.95	7.75	7.75
2/17/2016	CT-17	F-CT-17	PBR 138859	Cooling Tower CT-17 and CT-18 Rebuild/Replacement	N/A	0.01	0	0.01	0.01
2/17/2016	CT-18	F-CT-18	PBR 138859	Cooling Tower CT-17 and CT-18 Rebuild/Replacement	N/A	0.01	0	0.01	0.01
5/23/2017	CT-14	F-CT-14	PBR 146289	Shutdown Cooling Tower 14	N/A	0	0.01	-0.01	-0.01
5/23/2017	CT-14	F-CT-14	PBR 146289	Authorized additional service of MeOH rich water in tanks T-73 and T- 74 using 106.261 and authorized replacing cooling tower F-CT-14 under 106.371	N/A	0.01	0.00	0.01	0.01
1/16/2018	CT-14	F-CT-14	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0.00	Included above in PBR 146289		
1/16/2018	CT-17	F-CT-17	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0.00	Inch	ided above in PBR 138	8859
1/16/2018	CT-18	F-CT-18	NSR 46307	Incorporated F-CT-17 and F-CT-18 by consolidation, updated TNK- GRP, LOAD-GRP, and Wastewater tank physical data for emission calculations, and corrected annual loading throughput	N/A	0.00	Inclu	ided above in PBR 13	8859
3/14/2018	Various	EB-1B-505	NSR 19806	Update emissions calculations for EB-1B-505 and modify EB-1B- 2501 calculations due to change in firing rate	2015-2016	29	9.00	20.00	20.00
3/14/2018	Various	EB-1B-2501	NSR 19806	Update emissions calculations for EB-1B-505 and modify EB-1B- 2501 calculations due to change in firing rate	2015-2016	3.20	1.83	1.37	1.37
1/30/2019	Boiler 10 or Boiler 11	Boiler 10 or Boiler 11	PBR 154654	Initial PBR for degassing railcars prior to maintenance activities	N/A	0.16	0.00	0.16	0.16
TBD	BLR-9	EP-H9	NSR 46426	BD Unit Amendment	2011-2012	0.00	15.08	-15.08	-15.08
Summary of Contempo	oraneous Changes	Contem	poraneous Period:	1/1/2015	to	1/1/2020		Total	21.9

¹ Individual Table 3Fs should be used to summarize the project emission increase and net emission increase for each criteria pollutant.

² The permit issuance date for the modified or new facilities. Attach Table 4F for each project reduction claimed.

³ Emission Point No. as designated in NSR Permit or Emissions Inventory.

⁴All records and calculations for these values must be available upon request.

⁵ All records and calculations for these values must be available upon request.

⁶ Proposed (column A) - Baseline (column B).

⁷ If portion of the decrease not creditable, enter creditable amount.

8 Sum all values for this page.

TABLE 4FDESCRIPTION OF CREDITABLE REDUCTIONS

Company Name: TPC Group LLC	
Contaminant: NOx	
Date Action Occurred: Prior to start of construction or operation	
SIC Code for this Source: 2869	
Permit No.: 46307, 46426, 22052	
For Creditable Reductions, verify each statement by checking all boxes:	
The reductions occurred within the contemporaneous period.	X YES NO
The reductions occurred at the same major stationary source.	X YES NO
The reductions have not been relied upon in issuing a previous federal permit.	X YES NO
The reductions have not been used as an offset in a previous nonattainment permit, and are not reserved in a permit condition for use as an offset.	X YES NO
As of the date of this application, the reductions are not required by any rule pursuant to the Texas SIP (30 TAC 111, 115, and 117).*	X YES NO
The reductions are federally enforceable.	X YES NO
The reductions are of the same qualitative significance.	X YES NO
Records for all facilities are available to demonstrate the baseline emissions.	X YES NO

* - required only for nonattainment applicability analysis.

Please give a complete description of project. Provide all EPNs affected by this project:

Boiler 9 (EPN EP-H9) authorized under NSR Permit No 46426 will be shutdown, resuling in creditable NOx decreases.

 Table 4N

 Initial Lowest Achievable Emission Rate (LAER) Determination

Complete the items below and attach any supplemental information.	
Company Name: TPC Group LLC	
Source Type/Name: Houston Plant	
Location/Address: 8600 Park Place Blvd., Houston, TX 77017	
Estimated Start-up Date: February 2020	
RACT\BACT\LAER Clearinghouse:	
Search Date: October 2019	
Report Attached: Xes	No
Agencies Contacted:	
EPA's RBLC Database	
CA's Clearinghouse	
TCEQ Tier I BACT	
Bay Area Air Quality Management District (BAAQMD) Guidance	
Other Control Researched:	
South Coast Air Quality Management District (SCAQMD) Guidance	
Control Technology Proposed:	
See Section 8	

Fed oth	mpletion of this table demonstrates that the requirements of Section 17. leral Clean Air Act have been satisfied. If the "No" box is checked for a er than Question 1, the requirements of that section of the Federal Clea been fulfilled.	ny question
1.	Is the facility located within a Texas Enterprise Zone? Provide a map showing site location with respect to enterprise zone.	🗙 Yes 🗌 No
	If "Yes," a signed table 9N must accompany this form to certify the statem. If "No," further alternate site analysis is required. <i>(continue)</i>	ient.
2.	Have the potential and real adverse environmental effects of the proposed project been avoided to the maximum extent possible? That is, has lowest achievable emission rate (LAER) been applied and offsets provided?	🗙 Yes 🗌 No
3.	Do the social and economic benefits of the proposed project outweigh the environmental impact of the project?	X Yes 🗌 No
	If "Yes," this project as proposed will create what number of new jobs?	
	An emission offset will be provided in the ratio of $\frac{1.2}{1.2}$ that will actually decrease the environmental impacts in the area due to the pollutant of concern.	to 1 emission of the
4.	Have alternative projects which would offer more protection to the environment than the proposed facility without unduly curtailing nonenvironmental benefits been considered?	🗙 Yes 🗌 No
	If "Yes," an emission offset will be provided in the ratio of <u>1.2</u> that will actually decrease the environmental impacts in the area due to the pollutant of concern,	to 1 emission of the
\boxtimes	The market demands construction of this project, or	
	Other (please explain):	
5.	Have alternate sites been considered which would offer more protection to the environment than the project without unduly curtailing nonenvironmental benefits?	X Yes 🗌 No
	If "Yes," an emission offset will be provided in the ratio of 1.2 that will actually decrease the environmental impacts in the area due to the pollutant of concern, and:	to 1 emission of the
\boxtimes	The existing infrastructure encourages location of this project at the propos	sed site.
	Other (please explain):	

Check the Most Appropriate Answer								
The appropriate company official (owner, plant manager, president, vice environmental director) must initial all applicable statements.	president, or							
All net contemporaneous changes on Table 1F entitled "Air Quality Application Supplement" are accurate and all reductions used in the calculations of all net contemporaneous changes are creditable.	■ Yes □ No □ N/A							
All representations on Table 3F entitled "Project Contemporaneous Changes" are accurate, all reductions are creditable, and no reductions included on Table 3F "Project Contemporaneous Changes" have been used for offsets.	■ Yes □ No □ N/A							
The contemporaneous changes identified in Table 4F entitled "Description of Creditable Reductions" are accurate and have not been used as offsets. All reductions claimed on Table 4F are creditable as described by the checked boxes and these reductions have not been used as offsets for any other project.								
The following signature certifies that the control technology proposed and represented on Table 4N entitled "Initial Lowest Achievable Emission Rate (LAER) Determination" meets or exceeds LAER.	Yes No N/A							
Questions 1-5 on Table 6N entitled "Alternate Site Analysis" have been answered truthfully to the best of my ability.	Yes No N/A							
I,								
(Name – please print or type)								
(Title)								
state that the above representations and representations made on the accompanying tables are true and correct to the best of my knowledge and belief. I am also representing that those statements that are not initialed do not apply to this application.								
(Original Signature) (Must be in Ink)								
(Date)								

APPENDIX C: LAER/BACT SEARCH RESULTS

Process Vents Storage Tanks Cooling Towers

RBLC Search Results	(VOC - Process Vents)
RDD0 bear en nesans	(TOU Trocess remas)

		CORPORATE OR		PROCESS	PROCCESS	PRIMARY	THROUGH-	THROUGH-		CONTROL METHOD	EMISSION	EMISSION
RBLCID	FACILITY NAME	COMPANY NAME	PERMIT NUM	NAME	ТҮРЕ	FUEL	PUT	PUT UNIT	POLLUTANT	DESCRIPTION	LIMIT 1	LIMIT 1 UNIT
									Volatile Organic			
	ST. CHARLES	VALERO REFINING -	PSD-LA-	BOILERS (94-43		REFINERY		ММВТU/Н	Compounds			
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	& 94-45)	11.39	FUEL GAS	354	EA	(VOC)		1.91	LB/H
									Volatile Organic			
	ST. CHARLES	VALERO REFINING -	PSD-LA-	ARU FLARE		PROCESS			Compounds	COMPLY WITH 40 CFR 60 SUBPART		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	(2008-36)	50.008	FUEL GAS			(VOC)	А	0	
		,	,	, ,					. ,	PROPER EQUIPMENT DESIGN AND		
									Volatile Organic	OPERATION, GOOD COMBUSTION		
	ST. CHARLES	VALERO REFINING -	PSD-LA-	HEATERS/REBOI		REFINERY			Compounds	PRACTICES, AND USE OF GASEOUS		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	LERS	13.39	FUEL GAS			(VOC)	FUELS	0	
		,	. ,						Volatile Organic			
	ST. CHARLES	VALERO REFINING -	PSD-LA-	HEATERS (2008-		PROCESS			Compounds	COMPLY WITH 40 CFR 60 SUBPARTS		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	1 - 2008-9)	12.39	FUEL GAS			(VOC)	NNN AND RRR	0	
		, -	(- ,	MVR THERMAL					Volatile Organic		_	
	ST. CHARLES	VALERO REFINING -	PSD-LA-	OXIDIZER NO. 2		REFINERY			Compounds	COMPLY WITH 40 CFR 61 SUBPART		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	(2008-38)	50.008	FUEL GAS	200	MMBTU/H	(VOC)	BB	5.4	LB/H
			((()	PROPER EQUIPMENT DESIGN AND		
									Volatile Organic	OPERATION, GOOD COMBUSTION		
	ST. CHARLES	VALERO REFINING -	PSD-LA-	HEATERS (94-21		REFINERY			Compounds	PRACTICES, AND USE OF GASEOUS		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	& 94-29)	13 39	FUEL GAS			(VOC)	FUELS	0	
510210			015(115)	CPF HEATER H-	10100	1022 0.10			(100)	PROPER EQUIPMENT DESIGN AND	3	
				39-03 & amp; H-					Volatile Organic	OPERATION, GOOD COMBUSTION		
	ST. CHARLES	VALERO REFINING -	PSD-LA-	39-02 (94-28		REFINERY			Compounds	PRACTICES, AND USE OF GASEOUS		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	& 94-30)	13 30	FUEL GAS			(VOC)	FUELS	0.0054	lb/mmbtu
L/(0213			015(115)	BOILERS (2008-	13.55	1022 0/13			Volatile Organic		0.0054	
	ST. CHARLES	VALERO REFINING -	PSD-LA-	10, 2008-11,		REFINERY		MMBTU/H	Compounds	COMPLY WITH 40 CFR 60 SUBPARTS		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	2008-40)	11 30	FUEL GAS	715		(VOC)	NNN AND RRR	0	
LA 0215		NEW ORLEANS, LEC	015(1015)	2000 40)	11.55	TOLLOAD	/15	LA	Volatile Organic		0	
	ST. CHARLES	VALERO REFINING -	PSD-LA-	DHT HEATERS		REFINERY		MMBTU/H	Compounds	PROPER DESIGN AND OPERATION,		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	(4-81, 5-81)	13 39	FUEL GAS	70	EA	(VOC)	GOOD COMBUSTION PRACTICES	0	
LA 0215		NEW ORLEANS, LEC	015(1015)	(4 01, 5 01)	15.55	TOLLOAD	/0	LA	Volatile Organic	GOOD COMBOSTION TRACTICES	0	
	ST. CHARLES	VALERO REFINING -	PSD-LA-	HEATER F-72-		REFINERY			Compounds	PROPER DESIGN AND OPERATION,		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	703 (7-81)	11 30	FUEL GAS	633	MMBTU/H	(VOC)	GOOD COMBUSTION PRACTICES	0	
LA 0215		NEW ORLEANS, LEC	015(1015)	THERMAL	11.55	TOLLOAD	000	WINDTO/TT	(100)	GOOD COMBOSTION TRACTICES	0	
				OXIDIZERS					Volatile Organic			
	ST. CHARLES	VALERO REFINING -	PSD-LA-	(2008-32, 2008-		PROCESS		MMBTU/H	Compounds	PROPER DESIGN AND OPERATION,		
LA-0213	REFINERY	NEW ORLEANS, LLC	619(M5)	33, 2008-34)	50.008	FUEL GAS		EA	(VOC)	GOOD COMBUSTION PRACTICES	0	
LA 0215	LAKE CHARLES	NEW ORLEANS, LEC	015(1415)	55, 2000 54)	50.000	TOLLOAD	15	5	(100)	GOOD COMBOSTION TRACTICES	0	
	CHEMICAL								Volatile Organic	Good combustion practices and the		
		SASOL CHEMICALS		Hot Oil Heater					Compounds	tune-up provisions of 40 CFR 63		
LA-0290	2 UNIT	(USA) LLC	PSD-LA-778	(EQT 623)	12 30	Process Gas	171	MMBTU/HR	(VOC)	Subpart DDDDD	1 13	LB/HR
LA 0230	2 01111		130 14 110	(EQ1 023)	12.55	1100033 003	1/1	WIND O/TIK	(100)		1.15	LOJIIK
	LAKE CHARLES			Process Heaters								
	CHEMICAL			(EQT 690, 691,					Volatile Organic	Good combustion practices and the		
	COMPLEX GTL	SASOL CHEMICALS		(EQT 050, 051, 692, 751, 752,					Compounds	tune-up provisions of 40 CFR 63		
LA-0291	UNIT	(USA) LLC	PSD-LA-778		11 20	Process Gas	1210	MMBTU/H	(VOC)	Subpart DDDDD	2 2 2	LB/H
LA-0291	LAKE CHARLES	(USA) LLC	r 30-LA-778	& 753)	11.39	FIDLESS GdS	424.8				2.32	LU/N
	CHEMICAL								Volatilo Organia	Good compution practices and the		
	CHEMICAL COMPLEX GTL	SASOL CHEMICALS		Process Heater					Volatile Organic	Good combustion practices and the		
1 4 0 2 0 1				Process Heater	10.00	Drocoss Car	72.0		Compounds	tune-up provisions of 40 CFR 63	0.42	I D /UD
LA-0291	UNIT	(USA) LLC	PSD-LA-778	(EQT 702)	13.39	Process Gas	/3.8	MMBTU/H	(VOC)	Subpart DDDDD	0.42	LB/HR

	LAKE CHARLES			Base Oils DW								
	CHEMICAL			Reactor Feed					Volatile Organic	Good combustion practices and the		
	COMPLEX GTL	SASOL CHEMICALS		Heater (EQT					Compounds	tune-up provisions of 40 CFR 63		
LA-0291	UNIT	(USA) LLC	PSD-LA-778	776)	13.39	Process Gas	31	MMBTU/H	(VOC)	Subpart DDDDD	0.19	LB/HR
	LAKE CHARLES			Base Oils Light								
	CHEMICAL			Vacuum Feed					Volatile Organic	Good combustion practices and the		
	COMPLEX GTL	SASOL CHEMICALS		Heater (EQT					Compounds	tune-up provisions of 40 CFR 63		
LA-0291	UNIT	(USA) LLC	PSD-LA-778	777)	13.39	Process Gas	71.2	MMBTU/H	(VOC)	Subpart DDDDD	0.41	LB/HR
	LAKE CHARLES			Base Oils Heavy								
	CHEMICAL			Vacuum Feed					Volatile Organic	Good combustion practices and the		
	COMPLEX GTL	SASOL CHEMICALS		Heater (EQT					Compounds	tune-up provisions of 40 CFR 63		
LA-0291	UNIT	(USA) LLC	PSD-LA-778	778)	13.39	Process Gas	10	MM BTU/H	(VOC)	Subpart DDDDD	0.08	LB/HR
	LAKE CHARLES			HC Reactor								
	CHEMICAL			Feed Heaters					Volatile Organic	Good combustion practices and the		
	COMPLEX GTL	SASOL CHEMICALS		(EQT 736					Compounds	tune-up provisions of 40 CFR 63		
LA-0291	UNIT	(USA) LLC	PSD-LA-778	& 754)	13.39	Process Gas	70.8	ММВТU/Н	(voc)	Subpart DDDDD	0.41	LB/HR
	LAKE CHARLES	, , -		Fractionator				-, -	,	<u> </u>		
	CHEMICAL			Feed Heaters					Volatile Organic	Good combustion practices and the		
	COMPLEX GTL	SASOL CHEMICALS		(EQT 737					Compounds	tune-up provisions of 40 CFR 63		
LA-0291		(USA) LLC	PSD-LA-778	& 774)	12.39	Process Gas	248.7	MMBTU/H	(VOC)	Subpart DDDDD	1.37	LB/HR
0.0251	LAKE CHARLES	(00,1) 220	100 21770	DW Reactor	12:05		2.007		(100)	00000000	107	
	CHEMICAL			Feed Heaters					Volatile Organic	Good combustion practices and the		
	COMPLEX GTL	SASOL CHEMICALS		(EQT 738					Compounds	tune-up provisions of 40 CFR 63		
LA-0291		(USA) LLC	PSD-LA-778	& 775)	12 20	Process Gas	56.8	MMBTU/H	(VOC)	Subpart DDDDD	0.33	LB/HR
LA-0291	LAKE CHARLES	(03A) LLC	F 3D-LA-778	damp, 775j	15.55	FIOCESS Gas	50.8		(VOC)	Subpart DDDDD	0.55	солтк
	CHEMICAL									Good combustion practices and		
	COMPLEX								Volatile Organic	compliance with the applicable		
	GUERBET			Hot Oil Heater					Compounds			
1 4 0200	ALCOHOLS UNIT	SASOL CHEMICALS	PSD-LA-779		12.20	Deserve Car	40			provisions of 40 CFR 63 Subpart	0.21	1.0/110
LA-0298	LAKE CHARLES	(USA) LLC	PSD-LA-779	(EQT 772)	13.39	Process Gas	40	MM Btu/hr	(VOC)	DDDDD	0.21	LB/HR
				Utility Steam						Good combustion practices and		
	CHEMICAL			Boiler Nos. 1-3					Volatile Organic	compliance with the applicable		
	COMPLEX	SASOL CHEMICALS		(EQTs 967, 968,					Compounds	provisions of 40 CFR 63 Subpart		
LA-0301	ETHYLENE 2 UNIT	(USA) LLC	PSD-LA-779	& 969)	11.39	Process Gas	662	MM BTU/HR	(VOC)	DDDDD	3.63	LB/HR
				Furnace Nos. 1-								
	LAKE CHARLES			8 (EQTs 971,						Good combustion practices and		
	CHEMICAL			972, 973, 974,					Volatile Organic	compliance with the applicable		
	COMPLEX	SASOL CHEMICALS		975, 976, 977,					Compounds	provisions of 40 CFR 63 Subpart		
LA-0301	ETHYLENE 2 UNIT	(USA) LLC	PSD-LA-779	& 978)	11.39	Process Gas	654	MM BTU/HR	(VOC)	DDDDD	4.91	LB/HR
										Compliance with 40 CFR 60 Subpart		
										IIII and operating the engine in		
										accordance with the engine		
										manufacturer's instructions		
	LAKE CHARLES			Firewater Pump						and/or written procedures		
	CHEMICAL			Nos. 1-3 (EQTs					Volatile Organic	(consistent with safe operation)		
	COMPLEX	SASOL CHEMICALS		997, 998,					Compounds	designed to maximize combustion		
LA-0301	ETHYLENE 2 UNIT	(USA) LLC	PSD-LA-779	& 999)	17.21	Diesel	500	НР	(VOC)	efficiency and minimize fuel usage	0.1	LB/HR
				Process Heat								
	LAKE CHARLES			Boilers B-910A						Good combustion practices and		
	CHEMICAL			& B-910B					Volatile Organic	compliance with the applicable		
	COMPLEX	SASOL CHEMICALS		(EQTs 1008					Compounds	provisions of 40 CFR 63 Subpart		
LA-0302	EO/MEG UNIT	(USA) LLC	PSD-LA-779	& 1009)	13 39	Process Gas	78	MM BTU/HR		DDDDD	0.42	LB/HR

r												
	LAKE CHARLES									Good combustion practices and		
	CHEMICAL			Reactor Feed					Volatile Organic	compliance with the applicable		
		SASOL CHEMICALS		Heater (EQT					Compounds	provisions of 40 CFR 63 Subpart		
LA-0303	ALCOHOL UNIT	(USA) LLC	PSD-LA-779	1160)	13.39	Process Gas	18	MM BTU/HR	(VOC)	DDDDD	0.1	LB/HR
	LAKE CHARLES									Good combustion practices and		
	CHEMICAL								Volatile Organic	compliance with the applicable		
		SASOL CHEMICALS		Hot Oil Heater					Compounds	provisions of 40 CFR 63 Subpart		
1 4 0202					12.20	Deserve Car	240			DDDDD	1 20	
LA-0303	ALCOHOL UNIT	(USA) LLC	PSD-LA-779	(EQT 1161)	12.39	Process Gas	240	MM BTU/HR	(VUC)	טטטטט	1.29	LB/HR
				Industrial-Sized								
				Furnaces,					Volatile Organic			
	LINEAR ALPHA	INEOS OLIGOMERS	136130 AND	Natural Gas-					Compounds			
TX-0811	OLEFINS PLANT	USA LLC	N250	fired	12.31	natural gas	217	MM BTU / H	(VOC)	Good combustion practices	2.15	T/YR
	ODESSA		16963.			-			Volatile Organic			
	PETROCHEMICAL		PSDTX1478.						Compounds			
TX-0813	PLANT	REXTAC, LLC	GHGPSDTX148	Deilors	12.21	natural gas	222	ММВТU/Н	(VOC)	Post combustion practices	0.0005	lb/mmbtu
17-0912		REATAC, LLC		Bollers	12.51	natural gas	225			Best combustion practices	0.0005	LB/IVIIVIBIU
	ODESSA		16963,						Volatile Organic			
	PETROCHEMICAL		PSDTX1478,						Compounds			
TX-0813	PLANT	REXTAC, LLC	GHGPSDTX148	small Boiler	13.31	natural gas	39.9	MMBtu/hr	(VOC)	best combustion practices	0.0005	MMBTU/HR
	PORT ARTHUR	TOTAL	122353,						Volatile Organic			
	ETHANE SIDE	PETROCHEMICALS &	PSDTX1426,	Pyrolysis		NATURAL			Compounds			
TX-0815	CRACKER	REFINING USA. INC.	GHGPSDTX114	Furnaces	11.31	GAS	1000	kT / YR	(voc)	good combustion practices	24.68	T/YR
17 0015	LYONDELL		GIIGI SDIXII4	Turnaces	11.51	0,10	1000	KI / IK	(100)	Sood compastion practices	24.00	17110
	-											
	CHEMICAL								Volatile Organic			
		LYONDELL CHEMICAL		Reactor		NATURAL			Compounds			
TX-0823	PLANT	COMPANY	N244	Furnaces	64.001	GAS	4131	MM LB/YR	(VOC)	FIRED WITH NATURAL GAS	0.013	lb/mmbtu
	LYONDELL											
	CHEMICAL								Volatile Organic	Good combustion practice;		
	BAYPORT CHOATE	LYONDELL CHEMICAL	137789 AND	Emergency					Compounds	compliance with NSPS IIII, fired with		
TX-0823	PLANT	COMPANY	N244	Diesel Engines	64 000	DIESEL	0		(VOC)	ULSD	0.01	т/ур
17-0625	FLAINT	COMPANY	NZ44	Diesei Eligilies	04.999	DIESEL	0		(VOC)		0.01	1/16
										The flare designed to meet 40 CFR		
										§60.18 with a VOC DRE of 98% for		
										compounds with four carbons and		
										more, and 99% for compounds with		
										three or less. The flare has installed		
										a continuous flow monitor and		
										composition analyzer. Operation		
									Volatile Organic	conditions and flaring of off-gas		
	CHANNELVIEW			PROCESS VENTS		NATURAL			Compounds	shall be re-evaluated every two-		
TX-0835	TERMINAL	TARGA	N262	TO FLARE	40.00	GAS	10410100	SCF/YR	(VOC)	years.	0	
H		IANOA	NZUZ		19.33							
1			11202		19.33	6/15			(/	The heater has a maximum heating	-	
			11202		19.33	0/10			()	The heater has a maximum heating		
					19.33	0,10		·		capacity of less than 100 MMBtu.		
					19.33	0.0		·		capacity of less than 100 MMBtu. Good combustion practices will be		
			11202		19.33	010		·		capacity of less than 100 MMBtu. Good combustion practices will be used to reduce VOC including		
					19.33	5.0				capacity of less than 100 MMBtu. Good combustion practices will be		
					19.33	510		·		capacity of less than 100 MMBtu. Good combustion practices will be used to reduce VOC including		
					19.33					capacity of less than 100 MMBtu. Good combustion practices will be used to reduce VOC including maintain proper air-to-fuel ratio, necessary residence time,		
					19.33				Volatile Organic	capacity of less than 100 MMBtu. Good combustion practices will be used to reduce VOC including maintain proper air-to-fuel ratio, necessary residence time, temperature and turbulent.		
TV 0005	CHANNELVIEW			HOT OIL		NATURAL			Volatile Organic Compounds	capacity of less than 100 MMBtu. Good combustion practices will be used to reduce VOC including maintain proper air-to-fuel ratio, necessary residence time, temperature and turbulent. Fuel usage is monitored	0.000	
TX-0835		TARGA	N262	HOT OIL HEATER			0		Volatile Organic Compounds (VOC)	capacity of less than 100 MMBtu. Good combustion practices will be used to reduce VOC including maintain proper air-to-fuel ratio, necessary residence time, temperature and turbulent.	0.002	lb/MMBTU
TX-0835	CHANNELVIEW			HOT OIL HEATER CRUDE		NATURAL GAS			Volatile Organic Compounds	capacity of less than 100 MMBtu. Good combustion practices will be used to reduce VOC including maintain proper air-to-fuel ratio, necessary residence time, temperature and turbulent. Fuel usage is monitored	0.002	lb/mmbtu
TX-0835	CHANNELVIEW			HOT OIL HEATER		NATURAL			Volatile Organic Compounds (VOC)	capacity of less than 100 MMBtu. Good combustion practices will be used to reduce VOC including maintain proper air-to-fuel ratio, necessary residence time, temperature and turbulent. Fuel usage is monitored	0.002	lb/MMBTU

-		1	101616					-				
			101616,						Volatile Organic			
		TARGA MIDSTREAM	PSDTX696M2,	HOT OIL					Compounds			
TX-0849	MONT BELVIEU	SERVICES LLC	N214M1,	HEATERS	11.31	NATL GAS	0		(VOC)	CLEAN NATL GAS	0	
	GULF COAST											
	GROWTH		146425,						Volatile Organic			
	VENTURES	GCGV ASSET	PSDTX1518,						Compounds	best combustion practices, natural		
*TX-0858	PROJECT	HOLDING LLC	GHGPSDTX170	Elevated Flare	99.999	natural gas	0		(VOC)	gas supplemental fuel	0	
	GULF COAST											
	GROWTH		146425,						Volatile Organic			
	VENTURES	GCGV ASSET		Thermal					Compounds	best combustion practices, natural		
*TX-0858	PROJECT	HOLDING LLC		Oxidizers	موم مو	natural gas	0		(VOC)	gas supplemental fuel	0	
17 0050	GULF COAST		GHGI SDIAI70	OXIGIZETS	55.555	natural gas	Ŭ		(100)	Sus supplemental fuel	Ű	
	GROWTH		146425,	Ethylene Plant					Volatile Organic	good combustion practices and the		
									-	-		
****	VENTURES	GCGV ASSET		Pyrolysis					Compounds	use of gaseous fuel, process vents		
*TX-0858	PROJECT	HOLDING LLC	GHGPSDTX170	Furnace	64.001	blend gas	0		(VOC)	closed	0	
	GULF COAST											
	GROWTH		146425,						Volatile Organic			
	VENTURES	GCGV ASSET	PSDTX1518,	Multi Point					Compounds	best combustion practices, natural		
*TX-0858	PROJECT	HOLDING LLC	GHGPSDTX170	Ground Flare	99.999	natural gas	0		(VOC)	gas supplemental fuel	0	
									Volatile Organic	Control of VOC in vent gas from		
	POLYETHYLENE 7	THE DOW CHEMICAL	153106 AND						Compounds	pellet hoppers, blenders, and silos		
*TX-0863	FACILITY	COMPANY	N268	Furnace	13.9	natural gas	84.27	ММВТU/Н	(VOC)	monitored with a continuous FID	0	
	EQUISTAR											
	CHEMICALS		N266,						Volatile Organic			
	CHANNELVIEW	EQUISTAR	,	Multi Point					Compounds			
*TX-0864	COMPLEX	CHEMICALS, LP	,	Ground Flare	19 31	natural gas	0		(VOC)	good combustion practices	0	
17 0004	EQUISTAR		GIIGI SDIXIOS	Ground Hure	15.51	natural gas	Ŭ		(100)	good compastion practices	0	
	CHEMICALS		N266,						Volatile Organic			
	CHANNELVIEW	EQUISTAR	PSDTX1542,						•	good combustion practices, design		
****	-		,	Flamma di Flamma	10.24		0		Compounds	good combustion practices, design,	0	
*TX-0864	COMPLEX	CHEMICALS, LP	GHGPSDTX183	Elevated Flare	19.31	natural gas	0		(VOC)	natural gas fuel	0	
	EQUISTAR											
	CHEMICALS		N266,						Volatile Organic			
	CHANNELVIEW	EQUISTAR	PSDTX1542,	Thermal					Compounds	good combustion practices, design,		
*TX-0864	COMPLEX	CHEMICALS, LP	GHGPSDTX183	Oxidizer	19.2	natural gas	0		(VOC)	natural gas fuel	0	
	EQUISTAR											
	CHEMICALS		N264,						Volatile Organic			
	CHANNELVIEW	EQUISTAR	PSDTX1540,			natural gas,			Compounds	Good combustion practices, clean		
*TX-0865	COMPLEX	CHEMICALS, LP	GHGPSDTX182	Process Heaters	19.6	process gas	202	MMBtu/hr	(VOC)	fuel	5.5	LB/MMSCF
	EQUISTAR											
	CHEMICALS		N264,						Volatile Organic			
	CHANNELVIEW	EQUISTAR	PSDTX1540,	PDH PROCESS		NATURAL			Compounds			
*TX-0865	COMPLEX	CHEMICALS, LP		VENTS	64.003		0		(VOC)	MULTIPOINT GROUND FLARE	0	
	EQUISTAR		5		0000		, , , , , , , , , , , , , , , , , , ,		(0	
	CHEMICALS		N264,						Volatile Organic			
	CHANNELVIEW	EQUISTAR	PSDTX1540,	MULTIPOINT		NATURAL			Compounds	Good combustion practices, proper		
*TX-0865	COMPLEX	CHEMICALS, LP		GROUND FLARE	19.31		0		(VOC)		0	
1X-0865		CHEIVIICALS, LP	GHGPSD1X182	GROUND FLARE	19.31	GAS	0		(VUC)	design and operation	0	
	EQUISTAR											
	CHEMICALS		N264,			<u>-</u>			Volatile Organic			
	CHANNELVIEW	EQUISTAR	PSDTX1540,	MEROX		NATURAL			Compounds			
*TX-0865	COMPLEX	CHEMICALS, LP	GHGPSDTX182	PROCESS VENTS	64.003	GAS	0		(VOC)	ELEVATED FLARE	0	

Г		EQUISTAR										
		CHEMICALS		N264,	MEROX				Volatile Organic			
		CHANNELVIEW	EQUISTAR	PSDTX1540,	ELEVATED		NATURAL		Compounds	Good combustion practices, proper		
*	TX-0865	COMPLEX	CHEMICALS, LP	GHGPSDTX182	FLARE	19.31	GAS	0	(VOC)	design and operation	0	

RBLCID	ch Results (VOC - Storage Tanks FACILITY NAME	CORPORATE OR COMPANY NAME	PERMIT NUM	PROCESS NAME	PROCCESS TYPE	PRIMARY FUEL	THROUGH- PUT	THROUGH- PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT
FL-0322	SWEET SORGHUM-TO- ETHANOL ADVANCED BIOREFINERY	SOUTHEAST RENEWABLE FUELS (SRF), LLC	PSD-FL-412 (0510032-001- AC)	Storage Tanks	64.004	ethanol	23.01	MMGAL/12- MO	Volatile Organic Compounds (VOC)	Emissions of VOC from the Blending and Storage tanks will be controlled by the proper construction of the tanks per 40 CFR 60.110b(a)(2) which requires internal floating roofs in the tanks or the equivalent.	0	
LA-0277	COMONIMER-1 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-814	Storage Tanks (7 units)	64.004		0		Volatile Organic Compounds (VOC)	Internal Floating roofs (IFR)	0	
LA-0277	COMONIMER-1 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-814	C10+ Storage Tank T12-917	64.004		88128	gallons	Volatile Organic Compounds (VOC)	Submerged fill pipe	0	
LA-0290	LAKE CHARLES CHEMICAL COMPLEX GTL LAB-2 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Storage Tank NT-1 (EQT 625)	64.004		58	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	2.66	ТРҮ
LA-0290	LAKE CHARLES CHEMICAL COMPLEX GTL LAB-2 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Storage Tank NT-3 (EQT 626)	64.004		34.11	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	1.54	ТРҮ
LA-0290	LAKE CHARLES CHEMICAL COMPLEX GTL LAB-2 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Storage Tank NT-4 (EQT 627)	64.004		58.09	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	2.66	ТРҮ
LA-0290	LAKE CHARLES CHEMICAL COMPLEX GTL LAB-2 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Storage Tank NT-7 (EQT 628) GTLBO XLN Grade Finished	64.004		3.39	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	0.15	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Product Tanks (EQT 789 & amp; 790) GTLBO LN Grade Finished	64.004		45.3	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	1.06	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Product Tanks (EQT 791 & amp; 792) GTLBO MN Grade Finished	64.004		55.3	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	1.34	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Product Tanks (EQT 793 & 794) GTLBO HN Grade Finished	64.004		27.7	MM GALS	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	0.59	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Product Tanks (EQT 795 & 796)	64.004		24.9	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	0.52	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT50R Prover Tanks (EQT 703 & 704)	64.004		230.7	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	5.86	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT50R Storage Tank (EQT 705)	64.004		230.7	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	6.98	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT60R Prover Tanks (EQT 706 & 707)	64.004		157.7	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	3.86	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT60R Storage Tank (EQT 708)	64.004		157.7	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	4.84	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT70R Prover Tanks (EQT 709 & 710)	64.004		45.7	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	1.17	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT70R Storage Tank (EQT 711)	64.004		45.7	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	2.37	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT80R Prover Tanks (EQT 712 & 713)	64.004		94.6	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	2.32	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT50H Prover Tanks (EQT 714 & 715)	64.004		238.6	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	5.85	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT50H Storage Tank (EQT 716)	64.004		254.4	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	7.74	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT60H Prover Tanks (EQT 717 & 718)	64.004		231.8	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	5.68	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT60H Storage Tank (EQT 719)	64.004		254.4	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	7.16	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT70H Prover Tanks (EQT 720 & 721)	64.004		251.8	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	6.17	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT50HD Prover Tanks (EQT 722 & 723)	64.004		95.7	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	2.36	ТРҮ
LA-0291	LAKE CHARLES CHEMICAL COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	FT60HD Prover Tanks (EQT 724 & 725)	64.004		49.4	MM GALS/YR	Volatile Organic Compounds (VOC)	Fixed roof; best maintenance practices consistent with Sasol's written plan developed pursuant to LAC 33:III.2113	1.23	ТРҮ

RBLCID	FACILITY NAME	CORPORATE OR COMPANY	PERMIT NUM	PROCESS NAME	PROCCESS		THROUGH-	THROUGH-	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION	EMISSION
NDLCID	FACILITINAME	NAME	FERMIT NOM	FROCESS NAME	TYPE	FUEL	PUT	PUT UNIT	FOLLOTANT	CONTROL METHOD DESCRIPTION	LIMIT 1	LIMIT 1 UNIT
	LAKE CHARLES CHEMICAL								Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Wax Storage Tank (EQT 726)	64.004		5.3	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	0.23	TPY
	LAKE CHARLES CHEMICAL			Product Storage Tank (EQT					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	727)	64.004		104.1	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	2.62	TPY
	LAKE CHARLES CHEMICAL			Product Storage Tank (EQT					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	728)	64.004		10	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	0.41	TPY
	LAKE CHARLES CHEMICAL								Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Wax Storage Tank (EQT 729)	64.004		228.6	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	6.16	TPY
	LAKE CHARLES CHEMICAL			FT50 Non-Deoiled/Non HDT					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Wax Tank (EQT 741)	64.004		44	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	6.28	TPY
	LAKE CHARLES CHEMICAL			FT50 HDT and Deoiled Wax					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Tank (EQT 742)	64.004		1.39	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	0.2	TPY
	LAKE CHARLES CHEMICAL			FT50 HDT Deoiled Blended					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Wax Tank (EQT 743)	64.004		25.5	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	2.73	TPY
	LAKE CHARLES CHEMICAL			FT60 HDT and Deoiled Wax					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Tank (EQT 746)	64.004		4.63	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	2.73	TPY
	LAKE CHARLES CHEMICAL			FT50 Emulsion Wax Tank					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	(EQT 744)	64.004		57	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	1.66	TPY
	LAKE CHARLES CHEMICAL			FT60 Non-Deoiled Wax Tank					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	(EQT 745)	64.004		57	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	1.66	TPY
	LAKE CHARLES CHEMICAL			FT60 Blends Wax Tank (EQT					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	747)	64.004		2.31	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	0.33	TPY
	LAKE CHARLES CHEMICAL			FT70 Non-Deoiled/Non HDT					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Wax Tank (EQT 748)	64.004		4.63	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	0.66	TPY
	LAKE CHARLES CHEMICAL			FT70 HDT Wax Tank (EQT					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	749)	64.004		4.63	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	0.67	TPY
	LAKE CHARLES CHEMICAL			FT80 Non-Deoiled/Non HDT					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Wax Tank (EQT 750)	64.004		9.26	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	1.33	TPY
	LAKE CHARLES CHEMICAL			Naphtha Storage Tanks (EQT					Volatile Organic			
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	815, 816, & 817)	64.004		439	MM GALS/YR	Compounds (VOC)	Internal floating roof (IFR)	10.85	TPY
	LAKE CHARLES CHEMICAL			P/O Rundown Tanks (EQT					Volatile Organic			
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	818, 819, 820, & 821)	64.004		202	MM GALS/YR	Compounds (VOC)	Internal floating roof (IFR)	0.57	ТРҮ
	LAKE CHARLES CHEMICAL			Statutory Storage Tank (EQT					Volatile Organic			
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	826)	64.004		439	MM GALS/YR	Compounds (VOC)	Internal floating roof (IFR)	12.38	TPY
	LAKE CHARLES CHEMICAL			Petroleum Wax Storage Tank					Volatile Organic	Fixed roof: best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	(EQT 827)	64.004		79	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	0.76	TPY
	LAKE CHARLES CHEMICAL			Fresh Amine Storage Tank					Volatile Organic	Fixed roof; best maintenance practices consistent with Sasol's		
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	(EQT 829)	64.004		79	MM GALS/YR	Compounds (VOC)	written plan developed pursuant to LAC 33:III.2113	0.004	TPY
	LAKE CHARLES CHEMICAL			Process Licensor Methanol Tank Nos. 1 & amp; 2 (EQT					Volatile Organic			
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	797 & 798)	64.004		26.8	MM GALS/YR	Compounds (VOC)	Internal floating roof (IFR)	0.31	ТРҮ
	LAKE CHARLES CHEMICAL								Volatile Organic			
LA-0291	COMPLEX GTL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-778	Storage Tanks Routed to Flare	64.004	ŀ	()		Flare		0
	LAKE CHARLES CHEMICAL COMPLEX GUERBET ALCOHOLS			Isofol 12 Storage Tank (EQT					Volatile Organic			
LA-0298	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	759)	64.004	ŀ	6.3	MM GALS/YR	Compounds (VOC)		2.0	2 TPY
	LAKE CHARLES CHEMICAL COMPLEX GUERBET ALCOHOLS			Isofol 16 Storage Tank (EQT					Volatile Organic			
LA-0298	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	760)	64.004	1	6.27	MM GALS/YR	Compounds (VOC)		2.6	2 TPY
	LAKE CHARLES CHEMICAL			Icofol 20 Storage Tank (FOT								
LA-0298	COMPLEX GUERBET ALCOHOLS UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Isofol 20 Storage Tank (EQT 761)	64.004	ŀ	6.26	MM GALS/YR	Volatile Organic Compounds (VOC)		3.2	2 TPY
	LAKE CHARLES CHEMICAL			Inchil 24 Channel III - 1 (TTTT								
	COMPLEX GUERBET ALCOHOLS UNIT	1	1	Isofol 24 Storage Tank (EQT	1	1	1	1	Volatile Organic		1	1

	ch Results (VOC - Storage Tanks)	CORPORATE OR COMPANY			PROCCESS	PRIMARY	THROUGH-	THROUGH-			EMISSION	EMISSION
RBLCID	FACILITTNAME	NAME	PERMIT NUM	PROCESS NAME	ТҮРЕ	FUEL	PUT	PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	LIMIT 1	LIMIT 1 UNIT
	LAKE CHARLES CHEMICAL COMPLEX GUERBET ALCOHOLS			Isofol 28 Storage Tank (EQT					Volatile Organic			
LA-0298	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	763)	64.004	-	6.32	MM GALS/YR	Compounds (VOC)		4.45	5 ТРҮ
	LAKE CHARLES CHEMICAL			Leefel 22 Channel Teule (FOT					Weletile Ownerde			
LA-0298	COMPLEX GUERBET ALCOHOLS UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Isofol 32 Storage Tank (EQT 764)	64.004		6.4	MM GALS/YR	Volatile Organic Compounds (VOC)		3.56	5 TPY
	LAKE CHARLES CHEMICAL											
LA-0298	COMPLEX GUERBET ALCOHOLS	SASOL CHEMICALS (USA) LLC	PSD-I 4-779	External Alcohol Product Storage Tank (EQT 765)	64.004		6.4	MM GALS/YR	Volatile Organic Compounds (VOC)		2.03	2 TPY
11 02 70	LAKE CHARLES CHEMICAL	SASOL CHEMICAES (USA) EEC	130 11177	Guerbet Offspec Alcohol	04.004		0.4	MM GALS/ TR	compounds (voc)		2.01	1
	COMPLEX GUERBET ALCOHOLS			Storage Tanks (EQTs 766, 767	,				Volatile Organic			
LA-0298	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	& 768)	64.004		11.04	MM GALS/YR	Compounds (VOC)		1.2;	3 TPY
	LAKE CHARLES CHEMICAL			#4 Product Storage Tanks					Volatile Organic			
LA-0299	COMPLEX ETHOXYLATION UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	(EQTs 1081 & amp; 1082) Alcohol Storage Tanks (EQTs	64.004		15	MM GALS/YR	Compounds (VOC)		13.0	1 TPY
	LAKE CHARLES CHEMICAL			1091, 1092, 1093, &					Volatile Organic			
LA-0299	COMPLEX ETHOXYLATION UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1094)	64.004	-	5	MM GALS/YR	Compounds (VOC)		10.94	4 TPY
	LAKE CHARLES CHEMICAL			Product Storage Tanks (EQTs					Volatile Organic			
LA-0299	COMPLEX ETHOXYLATION UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1101 & amp; 1102)	64.004		8.4	MM GALS/YR			5.22	2 TPY
LA-0301	LAKE CHARLES CHEMICAL COMPLEX ETHYLENE 2 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Pressurized Tanks	64.004		0		Volatile Organic Compounds (VOC)	Maintain the working pressure sufficient at all times under normal operating conditions to prevent vapor or gas loss to the atmosphere		
11 0501	COMI EEX ETHTEENE 2 ONT	SHOOL CHEMICHES (05H) EEC	130 11177	LAC Tank (EQT 1110), Heavy	04.004		0		compounds (voc)	operating conditions to prevent vapor of gas loss to the autosphere	Ň	1
				Pygas (HAD) Tank (EQT								
LA-0301	LAKE CHARLES CHEMICAL COMPLEX ETHYLENE 2 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1111), and Pentane Drum (EQT 1113)	64.004		0		Volatile Organic Compounds (VOC)	Flare		
		cheen entrente (conjune	TOD LITTY	Wash Oil Tank (EQT 1116)	011001				compounds (voc)	rare .	Ì	1
LA-0301	LAKE CHARLES CHEMICAL COMPLEX ETHYLENE 2 UNIT	SASOL CHEMICALS (USA) LLC	DCD 1 4 770	and Dimethyl Sulfide Tank (EQT 1117)	64.004				Volatile Organic Compounds (VOC)	Plana		
LA-0301	COMPLEX ETHYLENE 2 UNIT	SASUL CHEMICALS (USA) LLC	PSD-LA-779	(EQT III7)	64.004		0		compounds (voc)	Flare		4
	LAKE CHARLES CHEMICAL			Methanol/Propanol Storage					Volatile Organic			
LA-0301	COMPLEX ETHYLENE 2 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Tank (EQT 984)	64.004		58824	GALS/YR	Compounds (VOC)	Internal Floating Roof	0.16	6 TPY
	LAKE CHARLES CHEMICAL			Methanol Storage Tank (EQT					Volatile Organic			
LA-0301	COMPLEX ETHYLENE 2 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	986)	64.004		15000	GALS/YR	Compounds (VOC)	Internal Floating Roof	0.12	2 TPY
	LAKE CHARLES CHEMICAL								Volatilo Organic			
LA-0301		SASOL CHEMICALS (USA) LLC	PSD-LA-779	Wash Oil Tank (EQT 993)	64.004		393176	GALS/YR	Volatile Organic Compounds (VOC)	Internal Floating Roof	0.16	6 TPY
LA-0302	LAKE CHARLES CHEMICAL COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	MEG Storage Tanks (EQTs 1015, 1016, & amp; 1017)	64.004		181 44	MM GALS/YR	Volatile Organic Compounds (VOC)		0.63	7 TPY
LIT 0002	COM DER DOF MED ONT	cheen entrente (conjune	TOD LITTY	1010, 1010, admp, 1017 j	011001		101.11	initianito, ni	compounds (voc)		0.0.	
LA-0302	LAKE CHARLES CHEMICAL		DOD 1 4 550	DEG Storage Tanks (EQTs	64.000		1107		Volatile Organic		0.01	1 TPY
LA-0302	COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1018 & 1019)	64.004		14.97	MM GALS/YR	Compounds (VOC)		0.0.	
	LAKE CHARLES CHEMICAL			TEG Storage Tanks (EQTs					Volatile Organic			
LA-0302	COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1020 & 1021)	64.004		792000	GALS/YR	Compounds (VOC)		0.00	1 TPY
	LAKE CHARLES CHEMICAL								Volatile Organic			
LA-0302	COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	DEG Storage Tank (EQT 1022)	64.004		14.97	MM GALS/YR	Compounds (VOC)		0.00	1 TPY
	LAKE CHARLES CHEMICAL			Crude Glycol Storage Tank					Volatile Organic			
LA-0302	COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	(EQT 1023)	64.004		181.44	MM GALS/YR	Compounds (VOC)		0.4	4 TPY
	LAVE CHARLES SUPPLYED			Courte Harris Charles								
LA-0302	LAKE CHARLES CHEMICAL COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Crude Heavy Glycol Storage Tank (EQT 1024)	64.004		16.11	MM GALS/YR	Volatile Organic Compounds (VOC)		0.03	3 TPY
					0 1.004	1	10.11				5.0.	1
LA-0302	LAKE CHARLES CHEMICAL COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	DCD 1 A 770	DEC Storago Tauly (EOT 1027)	64.004		266000	GALS/YR	Volatile Organic Compounds (VOC)		0.00	1 TPY
LA-0302	COMPLEX EU/MEG UNIT	SASUL CHEMICALS (USA) LLC	r5D-LA-779	PEG Storage Tank (EQT 1025)	04.004		300000	GALS/TK	compounds (VOC)		0.00.	1111
	LAKE CHARLES CHEMICAL			MEG Rundown Storage Tanks					Volatile Organic			
LA-0302	COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	(EQT 1026 & amp; 1027)	64.004		181.44	MM GALS/YR	Compounds (VOC)		0.18	B TPY
	LAKE CHARLES CHEMICAL			DEG Rundown Storage Tanks					Volatile Organic			
LA-0302	COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	(EQT 1028 & amp; 1029)	64.004		14.97	MM GALS/YR	Compounds (VOC)		0.003	3 TPY
	LAKE CHARLES CHEMICAL			TEG Rundown Storage Tanks					Volatile Organic			
LA-0302	COMPLEX EO/MEG UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	(EQT 1030 & amp; 1031)	64.004		792000	GALS/YR	Compounds (VOC)		0.00	1 TPY
	LAKE CHARLES CHEMICAL											
LA-0303	COMPLEX ZIEGLER ALCOHOL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	SSO Storage Tank (EQT 139)	64.004		25	MM GALS/YR	Volatile Organic Compounds (VOC)	Internal floating roof	1.03	3 TPY
	LAKE CHARLES CHEMICAL	CARGON CHEMICALS [USA] LEC	. 30-m-//3	555 Storage raik (EQT 157)	04.004		33	and ones/ IR	compounds (voc)	incention notating 1001	1.03	1
	COMPLEX ZIEGLER ALCOHOL								Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Alcohol Tank (EQT 173)	64.004		3.4	MM GALS/YR	Compounds (VOC)	Internal floating roof	0.26	6 TPY

RBLCID	ch Results (VOC - Storage Tanks) FACILITY NAME	CORPORATE OR COMPANY	PERMIT NUM	PROCESS NAME	PROCCESS	PRIMARY	THROUGH-	THROUGH-	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION	EMISSION
-	LAKE CHARLES CHEMICAL	NAME	-		TYPE	FUEL	PUT	PUT UNIT			LIMIT 1	LIMIT 1 UNIT
	COMPLEX ZIEGLER ALCOHOL			Isopropanol/Slurry Tank					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	(EQT 1163)	64.004	ł	0		Compounds (VOC)		0.1	1 TPY
				Alcohol/Hydrolysis Condensate/Slurry Tanks								
				(EQTs 1164, 1165, 1166,								
	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL			1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175,					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	& 1176)	64.004	ŀ	0		Compounds (VOC)		0.25	5 TPY
	LAKE CHARLES CHEMICAL											
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Growth Product Tanks (EQTs 1177 & amp; 1180)	64.004	L	124 51	MM GALS/YR	Volatile Organic Compounds (VOC)		5.93	2 TPY
	LAKE CHARLES CHEMICAL					-						
LA-0303	COMPLEX ZIEGLER ALCOHOL	SASOL CHEMICALS (USA) LLC	DED LA 770	Growth Product Tanks (EQTs	64.004		126 55	MM GALS/YR	Volatile Organic Compounds (VOC)			5 TPY
LA-0303	LAKE CHARLES CHEMICAL	SASUL CHEMICALS (USA) LLC	PSD-LA-779	1178 & 1179)	64.004	t	126.55	MM GAL5/ IK	compounds (VOC)		4.:	5 1 1 1
	COMPLEX ZIEGLER ALCOHOL			Hydrolysis Water Storage					Volatile Organic			
LA-0303	UNIT LAKE CHARLES CHEMICAL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Tank (EQT 1181)	64.004	ŀ	138.92	MM GALS/YR	Compounds (VOC)		2.83	3 TPY
	COMPLEX ZIEGLER ALCOHOL			Wet Crude Alcohol Storage					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Tank (EQT 1182)	64.004	ŀ	291.16	MM GALS/YR	Compounds (VOC)		6.8	1 TPY
	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL			HF 1000/LPA 140 Tank (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1183)	64.004	ł	25	MM GALS/YR	Compounds (VOC)		1.4	4 TPY
	LAKE CHARLES CHEMICAL											
LA-0303	COMPLEX ZIEGLER ALCOHOL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	TPT/LPA 140 Tank (EQT 1184)	64.004	L.	170563	GALS/YR	Volatile Organic Compounds (VOC)		0.0	9 TPY
	LAKE CHARLES CHEMICAL		100 11177	1101)	01100		170505	dilloj in	compounds (100)		0.0	
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT		DOD 1 4 550	C6 Alc A & amp; B Tanks (EQTS	5				Volatile Organic			2 TPY
LA-0303	LAKE CHARLES CHEMICAL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1185 & 1186)	64.004	t	21	MM GALS/YR	Compounds (VOC)		3.4.	2 1 1 1 1
	COMPLEX ZIEGLER ALCOHOL			Light Pure Cut Tank (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1187)	64.004	ł	25	MM GALS/YR	Compounds (VOC)		0.44	4 TPY
	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL			C1214 Alcohol Tank (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1188)	64.004	ł	12.9	MM GALS/YR	Compounds (VOC)		2.4	7 TPY
	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL								Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	C8 Pure Cut Tank (EQT 1189)	64.004	ŀ	10	MM GALS/YR	Compounds (VOC)		0.66	6 TPY
	LAKE CHARLES CHEMICAL											
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT	SASOL CHEMICALS (USA) LLC	PSD-I 4-779	C10 Pure Cut Tank (EQT 1190)	64.004	L	11	MM GALS/VR	Volatile Organic Compounds (VOC)		1.6	2 TPY
110505	LAKE CHARLES CHEMICAL	SHOOL CHEMICAES (05A) EEC	130-611775	1170)	04.00			MM GALD/ TR	compounds (voc)		1.0/	
1 4 0202	COMPLEX ZIEGLER ALCOHOL UNIT	CACOL CUENICAL C (UCA) LLC	DCD 1 4 770	C12 Pure Cut Tank (EQT 1191)	(1.00)			MM CALC (MD	Volatile Organic		1.20	TDV
LA-0303	LAKE CHARLES CHEMICAL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1191)	64.004	t	8	MM GALS/YR	Compounds (VOC)		1.25	9 TPY
	COMPLEX ZIEGLER ALCOHOL			C14 Pure Cut Tank (EQT					Volatile Organic			
LA-0303	UNIT LAKE CHARLES CHEMICAL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1192)	64.004	ł	5	MM GALS/YR	Compounds (VOC)		1.35	5 TPY
	COMPLEX ZIEGLER ALCOHOL			C16 Pure Cut Tank (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1193)	64.004	ŀ	3	MM GALS/YR	Compounds (VOC)		1.4	4 TPY
	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL			C18 Pure Cut Tank (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1194)	64.004	ł	2	MM GALS/YR	Compounds (VOC)		0.85	5 TPY
	LAKE CHARLES CHEMICAL			CO10 Aleshalm J (DOM					Websile C			
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	C810 Alcohol Tank (EQT 1195)	64.004	ł	21	MM GALS/YR	Volatile Organic Compounds (VOC)		3.0	Э ТРҮ
	LAKE CHARLES CHEMICAL											
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT	SASOL CHEMICALS (USA) LLC	PSD-I & 770	C1214 Alcohol Tank (EQT 1196)	64.004		10.0	MM GALS/YR	Volatile Organic Compounds (VOC)		35	1 TPY
LA-0303	LAKE CHARLES CHEMICAL	SUPERING APPENDENCE (OSA) FFC	1 30-64-779	11/0]	04.004		13.2	MM UALS/ IK	compounds (VOC)		2.5.	
	COMPLEX ZIEGLER ALCOHOL			C1618 Alcohol Tank (EQT			1		Volatile Organic			
LA-0303	UNIT LAKE CHARLES CHEMICAL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1197)	64.004	-	6.4	MM GALS/YR	Compounds (VOC)		2.84	4 TPY
	COMPLEX ZIEGLER ALCOHOL			C20+ Alcohol Tank (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	1198)	64.004	ł	4.2	MM GALS/YR	Compounds (VOC)		2.24	4 TPY
	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL			Alcohol/Butanol Tank (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	158)	64.004	ŀ	14.6	MM GALS/YR	Compounds (VOC)		0.3	3 TPY
	LAKE CHARLES CHEMICAL			Alashal Taula (FOTa 150								
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Alcohol Tanks (EQTs 159 & 165)	64.004	ł	7.22	MM GALS/YR	Volatile Organic Compounds (VOC)		0.69	9 TPY
	LAKE CHARLES CHEMICAL				21100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0.0.	
	COMPLEX ZIEGLER ALCOHOL	1	1		1	1	1	1	Volatile Organic			1

RBLCID	ch Results (VOC - Storage Tanks) FACILITY NAME	CORPORATE OR COMPANY NAME	PERMIT NUM	PROCESS NAME	PROCCESS TYPE	PRIMARY FUEL	THROUGH- PUT	THROUGH- PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT
	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL								Volatile Organic			
LA-0303	UNIT LAKE CHARLES CHEMICAL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Alcohol Tank (EQT 174)	64.004	ł	11.14	MM GALS/YR	Compounds (VOC)		3.45	TPY
	COMPLEX ZIEGLER ALCOHOL								Volatile Organic			
A-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Alcohol Tank (EQT 176)	64.004	ŀ	4.56	MM GALS/YR			1.58	TPY
	LAKE CHARLES CHEMICAL											
4 0202	COMPLEX ZIEGLER ALCOHOL UNIT	CACOL CUENICAL C (UCA) LLC	DCD 1 4 770	Alashal Taula (FOT 102)	(1.00)		(07	MACALCAR	Volatile Organic		3.08	7701/
LA-0303	LAKE CHARLES CHEMICAL	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Alcohol Tank (EQT 182)	64.004	ł	6.87	MM GAL5/ IK	Compounds (VOC)		3.08	111
	COMPLEX ZIEGLER ALCOHOL			Alcohol Storage Tank (EQT					Volatile Organic			
A-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	188)	64.004	ŀ	22.08	MM GALS/YR			2.64	TPY
	LAKE CHARLES CHEMICAL											
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT	SASOL CHEMICALS (USA) LLC	PSD IA 770	Alcohol Storage Tank (EQT 189)	64.004		22.2	MM CALS/VD	Volatile Organic Compounds (VOC)		2.02	TPY
A-0303	LAKE CHARLES CHEMICAL	SASOL CHEMICALS (USA) LLC	13D-LA-773	189	04.00-	r	33.3	MM GALS/ IK	compounds (voc)		3.93	111
	COMPLEX ZIEGLER ALCOHOL			Alkoxide Tank Service (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	205)	64.004	ł	3.67	MM GALS/YR	Compounds (VOC)		1.76	TPY
	LAKE CHARLES CHEMICAL											
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT	SASOL CHEMICALS (USA) LLC	PSD IA 770	Alcohol Tank (EQT 210)	64.004		102.94	MM CALS/VD	Volatile Organic Compounds (VOC)		15.05	TDV
A-0303	LAKE CHARLES CHEMICAL	SASOL CHEMICALS [USA] LEC	13D-LA-773	Alcohor Talik (EQT 210)	04.00*	r	102.94	MM GALS/ I K	compounds (voc)		15.05	111
	COMPLEX ZIEGLER ALCOHOL								Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Alcohol Tank (EQT 213)	64.004	ŀ	11.54	MM GALS/YR	Compounds (VOC)		5.12	TPY
	LAKE CHARLES CHEMICAL			Alashal Helles Taura Duadaat					Weletile Owners's			
LA-0303	COMPLEX ZIEGLER ALCOHOL UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Alcohol Utility Tower Product Tank (EQT 192)	64.004		19.22	MM GALS/VP	Volatile Organic Compounds (VOC)		0.84	TPY
Lat 0505	LAKE CHARLES CHEMICAL	SASOL CILLMICALS (USA) ELC	130 81 77 7	Tank (EQT 172)	01.00		17.22	MM GALS/ TR	compounds (voc)		0.04	
	COMPLEX ZIEGLER ALCOHOL			Hotwash Solvent Tank (EQT					Volatile Organic			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	149)	64.004	ł	5.96	MM GALS/YR	Compounds (VOC)		8.58	TPY
	LAKE CHARLES CHEMICAL COMPLEX ZIEGLER ALCOHOL			Alaahal Utility Towar Draduat					Valatila Organia			
LA-0303	UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-779	Alcohol Utility Tower Product Tank (EQT 193)	64.004	L	19.22	MM GALS/YR	Volatile Organic Compounds (VOC)		0.77	TPY
	ONT	SHOOL CHEMICHES (05H) EEC	130 81 77 7	Tank (EQT 195)	01.00		17.22	MM GALS/ TR	compounds (voc)		0.77	
	INDORAMA LAKE CHARLES	INDORAMA VENTURES							Volatile Organic			
LA-0314	FACILITY	OLEFINS, LLC	PSD-LA-813	oil tank FA-712 - 012	64.004	ł	66150	gal	Compounds (VOC)	IFR with liquid mounted seal, double seal, or mechanical seal	0	
	INDORAMA LAKE CHARLES	INDORAMA VENTURES		atown water area tenls TV 0					Volatile Organic			
LA-0314	FACILITY	OLEFINS, LLC	PSD-LA-813	storm water surge tank TK-9 - 013	64.004	L	291410	gallons	Compounds (VOC)	fixed roof	0	
								A				
	INDORAMA LAKE CHARLES	INDORAMA VENTURES		process water storage tanks					Volatile Organic	EFR with primary and secondary seal, submerged fill pipe, and		
LA-0314	FACILITY	OLEFINS, LLC	PSD-LA-813	TK-301A/B - 017	64.004	ł	350000	gallons	Compounds (VOC)	complying with 40 CFR 63 Subpart WW	0	
	INDORAMA LAKE CHARLES	INDORAMA VENTURES							Volatile Organic			
LA-0314	FACILITY	OLEFINS, LLC	PSD-LA-813	Methanol Tank TK-2	64.004	ł	1469	gallons		Submerged fill pipe and LAC 33:III.2103	0	
	INDORAMA LAKE CHARLES	INDORAMA VENTURES							Volatile Organic	Closed vent system and routed to a flare, Complying with 40 CFR 60		
LA-0314	FACILITY	OLEFINS, LLC	PSD-LA-813	pyrolysis gasoline tank V-410	64.004	ł	946996	gallons	Compounds (VOC)	Subpart Kb and LAC 33:III.2103	0	
									Volatile Organic			
LA-0315	G2G PLANT	BIG LAKE FUELS LLC	PSD-LA-781	Crude Methanol Storage Tank	64.004	ł	465.8	MM GALS/YR		Fixed roof tank with water scrubber	0.53	LB/H
	606 DI 41/7		DOD 1 4 504		64.00				Volatile Organic		0.45	
LA-0315	G2G PLANT	BIG LAKE FUELS LLC	PSD-LA-781	Methanol Day Shift Tank 1	64.004	k		MM GALS/YR	Volatile Organic Compounds (VOC)	Internal Floating Roof (IFR) Tank	0.17	LB/H
LA-0315	G2G PLANT	BIG LAKE FUELS LLC	PSD-LA-781	Methanol Day Shift Tank 1	64.004	1		MM GALS/YR	Compounds (VOC)	Internal Floating Roof (IFR) Tank	0.17	LB/H
	G2G PLANT G2G PLANT	BIG LAKE FUELS LLC BIG LAKE FUELS LLC	PSD-LA-781 PSD-LA-781	Methanol Day Shift Tank 1 Methanol Day Shift Tank 2	64.004	k	232.9		Compounds (VOC) Volatile Organic	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank		LB/H LB/H
*LA-0315 *LA-0315						F	232.9		Compounds (VOC) Volatile Organic Compounds (VOC)			
LA-0315	G2G PLANT	BIG LAKE FUELS LLC	PSD-LA-781	Methanol Day Shift Tank 2	64.004	F	232.9	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic	Internal Floating Roof (IFR) Tank	0.17	LB/H
	G2G PLANT G2G PLANT					F F	232.9	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC)		0.17	
*LA-0315 *LA-0315	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1	BIG LAKE FUELS LLC BIG LAKE FUELS LLC	PSD-LA-781 PSD-LA-781	Methanol Day Shift Tank 2 Product Methanol Tank	64.004 64.004	k k	232.9	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank	0.17	LB/H
LA-0315	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT	BIG LAKE FUELS LLC	PSD-LA-781 PSD-LA-781	Methanol Day Shift Tank 2	64.004	k	232.9	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC)	Internal Floating Roof (IFR) Tank	0.17	LB/H
LA-0315 LA-0315	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL	BIG LAKE FUELS LLC BIG LAKE FUELS LLC	PSD-LA-781 PSD-LA-781	Methanol Day Shift Tank 2 Product Methanol Tank	64.004 64.004	k 	232.9	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC)	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank	0.17	LB/H
LA-0315 LA-0315 LA-0319	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1	BIG LAKE FUELS LLC BIG LAKE FUELS LLC SASOL CHEMICALS (USA) LLC	PSD-LA-781 PSD-LA-781 PSD-LA-814	Methanol Day Shift Tank 2 Product Methanol Tank Storage tanks (7 tanks)	64.004 64.004 64.004	6 6 6	232.9 232.9 465.8 0	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank Equipped with internal floating roofs (IFR)	0.17	LB/H
*LA-0315 *LA-0315	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL	BIG LAKE FUELS LLC BIG LAKE FUELS LLC	PSD-LA-781 PSD-LA-781 PSD-LA-814	Methanol Day Shift Tank 2 Product Methanol Tank	64.004 64.004	L L	232.9	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC)	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank	0.17	LB/H
LA-0315 LA-0315 .A-0319 .A-0319	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT	BIG LAKE FUELS LLC BIG LAKE FUELS LLC SASOL CHEMICALS (USA) LLC SASOL CHEMICALS (USA) LLC VALERO REFINING COMPANY :	PSD-LA-781 PSD-LA-781 PSD-LA-814 PSD-LA-814 PSD-LA-814	Methanol Day Shift Tank 2 Product Methanol Tank Storage tanks (7 tanks) storage tank t12-917	64.004 64.004 64.004	6 6 6	232.9 232.9 465.8 0	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC)	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank Equipped with internal floating roofs (IFR) Submerged fill pipe	0.17	LB/H
*LA-0315 *LA-0315 LA-0319	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1	BIG LAKE FUELS LLC BIG LAKE FUELS LLC SASOL CHEMICALS (USA) LLC SASOL CHEMICALS (USA) LLC	PSD-LA-781 PSD-LA-781 PSD-LA-814 PSD-LA-814	Methanol Day Shift Tank 2 Product Methanol Tank Storage tanks (7 tanks)	64.004 64.004 64.004		232.9 232.9 465.8 0	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC)	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank Equipped with internal floating roofs (IFR)	0.17	LB/H
LA-0315 LA-0315 .A-0319 .A-0319	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT ST. CHARLES REFINERY	BIG LAKE FUELS LLC BIG LAKE FUELS LLC SASOL CHEMICALS (USA) LLC SASOL CHEMICALS (USA) LLC VALERO REFINING COMPANY- NEW ORLEANS LLC	PSD-LA-781 PSD-LA-781 PSD-LA-814 PSD-LA-814 PSD-LA-814	Methanol Day Shift Tank 2 Product Methanol Tank Storage tanks (7 tanks) storage tank t12-917	64.004 64.004 64.004		232.9 232.9 465.8 0	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank Equipped with internal floating roofs (IFR) Submerged fill pipe	0.17	LB/H
LA-0315 LA-0315 .A-0319 .A-0319 .A-0320	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT ST. CHARLES REFINERY HOLSTON ARMY AMMUNITION	BIG LAKE FUELS LLC BIG LAKE FUELS LLC SASOL CHEMICALS (USA) LLC SASOL CHEMICALS (USA) LLC VALERO REFINING COMPANY NEW ORLEANS LLC BAE SYSTEMS ORDNANCE	PSD-LA-781 PSD-LA-781 PSD-LA-814 PSD-LA-814 PSD-LA-814 PSD-LA- 619(M11)	Methanol Day Shift Tank 2 Product Methanol Tank Storage tanks (7 tanks) storage tank t12-917 BTX Unit Tanks	64.004 64.004 64.004 64.004 64.004		232.9 232.9 465.8 0	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank Equipped with internal floating roofs (IFR) Submerged fill pipe	0.17	LB/H LB/H TONS/12
LA-0315 LA-0315 A-0319 A-0319	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT ST. CHARLES REFINERY HOLSTON ARMY AMMUNITION	BIG LAKE FUELS LLC BIG LAKE FUELS LLC SASOL CHEMICALS (USA) LLC SASOL CHEMICALS (USA) LLC VALERO REFINING COMPANY- NEW ORLEANS LLC	PSD-LA-781 PSD-LA-781 PSD-LA-814 PSD-LA-814 PSD-LA-814 PSD-LA- 619(M11)	Methanol Day Shift Tank 2 Product Methanol Tank Storage tanks (7 tanks) storage tank t12-917	64.004 64.004 64.004		232.9 232.9 465.8 0	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC)	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank Equipped with internal floating roofs (IFR) Submerged fill pipe	0.17	LB/H
LA-0315 LA-0315 A-0319 A-0319 A-0320	G2G PLANT G2G PLANT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT ST. CHARLES REFINERY HOLSTON ARMY AMMUNITION	BIG LAKE FUELS LLC BIG LAKE FUELS LLC SASOL CHEMICALS (USA) LLC SASOL CHEMICALS (USA) LLC VALERO REFINING COMPANY NEW ORLEANS LLC BAE SYSTEMS ORDNANCE	PSD-LA-781 PSD-LA-781 PSD-LA-814 PSD-LA-814 PSD-LA-814 PSD-LA- 619(M11)	Methanol Day Shift Tank 2 Product Methanol Tank Storage tanks (7 tanks) storage tank t12-917 BTX Unit Tanks	64.004 64.004 64.004 64.004 64.004		232.9 232.9 465.8 0	MM GALS/YR	Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC) Volatile Organic	Internal Floating Roof (IFR) Tank Internal Floating Roof (IFR) Tank Equipped with internal floating roofs (IFR) Submerged fill pipe	0.17	LB/H LB/H TONS/12

RBLCID	ch Results (VOC - Storage Tanks) FACILITY NAME	CORPORATE OR COMPANY	DEDMIT MUM	PROCESS NAME	PROCCESS	PRIMARY	THROUGH-	THROUGH-	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION	EMISSION
KBLCID	FACILITYNAME	NAME	PERMIT NUM	PROCESS NAME	TYPE	FUEL	PUT	PUT UNIT	POLLUTANI	CONTROL METHOD DESCRIPTION	LIMIT 1	LIMIT 1 UNIT
			7186,									
TX-0804	ADN UNIT	INVISTA S.A R.L.		Storage Tanks 10TFX022 and 10TFX057	64.004			0	Volatile Organic Compounds (VOC)	60.18 Flare	2.4	T/YR
1A-0604	ADN UNIT	INVISTA S.A.K.L.	GHGPSDTX145	101FX037	64.004			J	compounds (voc)	80.18 Flate	3.4	1/1K
										A vapor recovery system captures all vapor under tank shell and		
			136130 AND	SOCMI Floating Roof Storage					Volatile Organic	routes them to a thermal oxidizer. For alpha olefins, product quality		
TX-0811	LINEAR ALPHA OLEFINS PLANT	INEOS OLIGOMERS USA LLC	N250	Tanks	64.004	ł		D	Compounds (VOC)	considerations dictate the use of a nitrogen blanketing system		T/YR
										Fixed roof tanks: no add-on controls. Volatility of stock limited to		
			136130 AND	SOCMI Fixed Roof Storage					Volatile Organic	0.10 psia by permit condition. For alpha olefins, product quality		
TX-0811	LINEAR ALPHA OLEFINS PLANT	INEOS OLIGOMERS USA LLC	N250	Tanks	64.004	ł		D	Compounds (VOC)	considerations dictate the use of a nitrogen blanketing system.	0.17	T/YR
			122353,									
mr 0045	PORT ARTHUR ETHANE SIDE CRACKER	TOTAL PETROCHEMICALS &	PSDTX1426,	STORAGE TANKS	64.004				Volatile Organic			
TX-0815	CRACKER	REFINING USA, INC.	GHGPSDTX114	STORAGE TANKS	64.004			J	Compounds (VOC)	THERMAL OXIDIZER	(
	LYONDELL CHEMICAL	LYONDELL CHEMICAL	137789 AND						Volatile Organic	vessels will be equipped with suspended IFR for materials of vapor		
TX-0823	BAYPORT CHOATE PLANT	COMPANY	N244	STORAGE TANKS	64.004	L		D	Compounds (VOC)	pressures greater than 0.5 psia and less than 11.0 psia.	4.72	T/YR
										Present of Branch and the best and too and the best		- /
										storage of a by-product stream mixture of light liquids will be		
										constructed of stainless steel to minimize corrosive effects from		
										water in the stored materials; these vessels are equipped with fixed		
	LYONDELL CHEMICAL	LYONDELL CHEMICAL	137789 AND						Volatile Organic	roofs, coated with black epoxy to minimize external corrosion and		
TX-0823	BAYPORT CHOATE PLANT	COMPANY	N244	STORAGE TANKS	64.004	ł		D	Compounds (VOC)	their emissions will be flared.	0	
										Minimum Control for Vertical Fixed Roof (VFR) Tanks		
										a)All surfaces exposed to the sun are painted white		
										b)Submerged fill c)True Vapor Pressure (TVP) of contents less than 11 psia		
										cjui de vapor Pressure (1VP) or contents less than 11 psia		
			PSDTX1079M2.							For VFR tank contents TVP greater than 0.5 psia and tank capacity		
			GHGPSDTX145	PROCESS VESSELS AND					Volatile Organic	capacity greater than or equal to 25,000 gallons vent to flare with		
TX-0843	VICTORIA PLANT	INVISTA S.A.R.L.	M1	TANKS	64.004	ł		D		minimum DRE of 98%.	41	T/YR
			146425,							painted white and employ bottom or submerged fill. Storage tanks		
	GULF COAST GROWTH		PSDTX1518,			1		1		with capacities less than 25,000 gallons which store stocks with a		
*TX-0858	VENTURES PROJECT	GCGV ASSET HOLDING LLC	GHGPSDTX170	Fixed Roof Tanks	64.004	-	-	D	Compounds (VOC)	VOC vapor pressure of less than 0.50 psia are exempt	0	
						1		1	1	internal floating roof with a welded deck. Floating roof tanks must		
			146425,			1				be designed with a sump whose drain pipe discharges to no more than one diameter above the bottom of the sump, and must be		
	GULF COAST GROWTH		146425, PSDTX1518.			1		1	Volatile Organic	than one diameter above the bottom of the sump, and must be designed with a connection to a control device for use during		
*TX-0858	VENTURES PROJECT	GCGV ASSET HOLDING LLC		Floating Roof Tanks	64.004	1	1	n		floating roof landings		
~1X-0828	VENTUKES PROJECT	GUGV ASSET HOLDING LLC	GHGPSDTX1/0	Floating Root Tanks	64.004	r	1	J	compounds (VOC)	noating root landings	L L	

RBLC Search Results (VOC - Floating Roof)

RBLCID	FACILITY NAME	CORPORATE OR COMPANY NAME		PROCESS NAME	PROCCESS TYPE	PRIMARY FUEL	THROUGH- PUT	THROUGH- PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT
				Recovered oil								
				storage tank,					Volatile Organic			
	CHEVRON	CHEVRON		external floating roof					Compounds			
A-1180	PRODUCTS CO	PRODUCTS CO	22722	with dome	42.006		0		(VOC)	Requires domes on external floating roof tanks.	0	
				internal floating roof-								
				denatured etahnol					Volatile Organic			
			APCD2009-	cargo tank unloading		DENATURED			Compounds			
A-1230	SFPP,LP		APP-988083	station	42.002	ETHANOL	325	gallons	(VOC)	DIRECT PUMP TO IFR TANK-INTERGRAL VALVES FOR DRY DISCONNECT	13.39	LB/D
									Volatile Organic			
			APCD2014-	Internal floating roof					Compounds			
A-1236	SFPP,LP		APP-003322	storage tank	42.006	GASOLINE	0		(VOC)	Dual rim seals	1763.25	LB
	- /						-		(<i>1</i>			
	COLONIAL			26 Internal floating								
	PIPELINE CO			roof storage tanks		Material			Volatile Organic			
	LINDEN JCT	COLONIAL	18046 /	for materials with		with RVP <=			Compounds			
IJ-0083	TANK FARM	PIPELINE	BOP130002	RVP <= 15	42.006	15	2072718	MGAL/YR	(VOC)	Vapor combustion unit for cleaning & roof landings	0	
	CUSHING	FIFELINE	DUF130002	INF OIL,- 13	42.000	10	2012110	NIGAL/ TR	(*00)	vapor compustion unit for cleaning & foor idituitigs	И	1
	TERMINAL											
	CRUDE OIL			Crude Oil Storage in					Volatile Organic			
	STORAGE	PLAINS	2003-104-	External Floating					Compounds			
0K-0139	FACILITY	MARKETING LP	C(M-4)PSD	Roof Tanks	42.006	NA	570000	Barrels	(VOC)	No controls feasible ; external floating roof tanks.	437.35	TONS
				Petroleum Liquid								
				Marketing;						For storage of VOC in floating roof tanks, the tanks will have welded decks,		
				Petroleum Liquid		natural gas			Volatile Organic	mechanical shoe primary and rim-mounted secondary seal for VOC with a		
	TEXAS DOCK	TRAFIGURA	106594/PSD	Storage in Floating		as pilot fuel			Compounds	vapor pressure >0.5 psia. Floating roof tank landings are limited in frequency		
TX-0653	AND RAIL	TERMINALS LLC	TX1324	Roof Tanks	42.006	for VCU	250	Mbbl	(VOC)	and duration.	11.23	ТРҮ
17 0055	CORPUS	TERMINALS LEC	1/1524	Noor runks	42.000		250	111001	(100)		11.25	
	CHRISTI											
	TERMINAL			Petroleum Liquids					Volatile Organic			
									-			
	CONDENSATE	MAGELLAN	118270 AND	Storage in Fixed Roof	12.005			MMBbl/yr/tan		Temperature reduced to maintain volatile organic compound (VOC) vapor	45.70	TONGARD
X-0731	SPLITTER	PROCESSING LP	PSDTX1398	Tanks	42.005		3.4	k	(VOC)	pressure < 0.5 pounds per square inch actual (psia) at all times.	15.78	TONS/YR/TANK
										Required floating roof with welded deck seams if the tank will store products		
										with VOC vapor pressure of 0.5 psia or greater. Proper fitting and seal		
										integrity for the floating roof is ensured through visual inspections and any		
										seal gap measurements specified in 40 CFR § 60.113b.		
	CORPUS									The vapor space under the floating roof must be routed to a control device		
	CHRISTI									during standing idle periods until the vapor space VOC concentration is		
	TERMINAL			Petroleum Liquids					Volatile Organic			
	CONDENSATE	MAGELLAN	118270 AND	Storage in Floating				MMBbl/yr/tan	-			
					12 000			wiwibbi/yr/tan		tank entry is planned. Refilling must also be controlled if the product stored	5 00	TONCOUR
X-0731	SPLITTER	PROCESSING LP	PSDTX1398	Roof Tanks	42.006		8	k	(VOC)	has a VOC vapor pressure of 0.5 psia or greater.	5.09	TONS/YR/TAN
								1			1	1
								1			1	
										Required floating roof with welded deck seams if the tank will store products		
								1		with VOC vapor pressure of 0.5 psia or greater. Proper fitting and seal	1	
								1		integrity for the floating roof is ensured through visual inspections and any	1	
								1		seal gap measurements specified in 40 CFR § 60.113b.	1	
								1		The vapor space under the floating roof must be routed to a control device	1	
				Petroleum Liquids						during standing idle periods until the vapor space VOC concentration is		
			106594 AND	Storage in Floating					Volatile Organia	10,000 ppmv or less. The tank roof must be landed on its lowest legs unless		
	1			Roof Tanks - 45				turnovers/yr/t	-	tank entry is planned. Refilling must also be controlled if the product stored	1	
	TEVAS DOCK 9											
K-0745	TEXAS DOCK & RAIL	BUCKEYE TEXAS HUB LLC	PSDTX1324 M1	MMbbl	42.006		48	ank	(VOC)	has a VOC vapor pressure of 0.5 psia or greater.	2.06	TONS/YR/TA

										Required floating roof with welded deck seams if the tank will store products with VOC vapor pressure of 0.5 psia or greater. Proper fitting and seal integrity for the floating roof is ensured through visual inspections and any seal gap measurements specified in 40 CFR § 60.113b.		
TX-0745	TEXAS DOCK & RAIL	BUCKEYE TEXAS HUB LLC		Petroleum Liquids Storage in Floating Roof Tanks - 50 MMBbl	42.006	6	0	turnovers/yr/t ank		The vapor space under the floating roof must be routed to a control device during standing idle periods until the vapor space VOC concentration is 10,000 ppmv or less. The tank roof must be landed on its lowest legs unless tank entry is planned. Refilling must also be controlled if the product stored has a VOC vapor pressure of 0.5 psia or greater.	4.18	TONS/YR/TANK
							-		(
										Required floating roof with welded deck seams if the tank will store products with VOC vapor pressure of 0.5 psia or greater. Proper fitting and seal integrity for the floating roof is ensured through visual inspections and any seal gap measurements specified in 40 CFR § 60.113b.		
				Petroleum Liquids Storage in Floating					-	The vapor space under the floating roof must be routed to a control device during standing idle periods until the vapor space VOC concentration is 10,000 ppmv or less. The tank roof must be landed on its lowest legs unless		
TX-0745	TEXAS DOCK & RAIL	BUCKEYE TEXAS HUB LLC	PSDTX1324 M1	Roof Tanks -115 MMBbl	42.006	6	0	turnovers/yr/t ank	Compounds (VOC)	tank entry is planned. Refilling must also be controlled if the product stored has a VOC vapor pressure of 0.5 psia or greater.	3.71	TONS/YR/TANK
										Required floating roof with welded deck seams if the tank will store products with VOC vapor pressure of 0.5 psia or greater. Proper fitting and seal integrity for the floating roof is ensured through visual inspections and any seal gap measurements specified in 40 CFR § 60.113b.		
TX-0745	TEXAS DOCK & RAIL	BUCKEYE TEXAS HUB LLC		Petroleum Liquids Storage in Floating Roof Tanks - 285 MMBbl	42.006	3	6	turnovers/yr/t ank		The vapor space under the floating roof must be routed to a control device during standing idle periods until the vapor space VOC concentration is 10,000 ppmv or less. The tank roof must be landed on its lowest legs unless tank entry is planned. Refilling must also be controlled if the product stored has a VOC vapor pressure of 0.5 psia or greater.	7.32	TONS/YR/TANK
	CCI CORPUS CHRISTI CONDENSATE SPLITTER	CASTLETON COMMODITIES INTERNATIONAL		Storage Tanks, TK- 101, TK-102, TK-103,					Compounds	Internal floating roof with mechanical shoe primary seal and a rim mounted secondary seal. Deck is welded with gaskets on all deck appurtenances. The tank bottoms shall be drain dry design âć" any remaining heel will drain to a sump, which in turn can be emptied. The floating roof shall be equipped with a connection to a vapor recovery system such that vapors from under a		
TX-0756	FACILITY	(CCI) CORPUS C	PSDTX1388	TK-104	42.006	3	83000000	gal/yr/tank	(VOC)	landed roof may be directed to a control device.	6.44	LB/HR
	CCI CORPUS CHRISTI CONDENSATE SPLITTER	CASTLETON COMMODITIES INTERNATIONAL		Storage Tanks, TK-					Compounds	Internal floating roof with mechanical shoe primary seal and a rim mounted secondary seal. Deck is welded with gaskets on all deck appurtenances. The tank bottoms shall be drain dry design $\hat{a} \in$ any remaining heel will drain to a sump, which in turn can be emptied. The floating roof shall be equipped with a connection to a vapor recovery system such that vapors from under a		
TX-0756	FACILITY	(CCI) CORPUS C	PSDTX1388	105, TK-106	42.006	3	00000000	gal/yr/tank	(VOC)	landed roof may be directed to a control device.	2.35	LB/R
	CCI CORPUS CHRISTI CONDENSATE SPLITTER	CASTLETON COMMODITIES INTERNATIONAL	116072 AND	Storage Tanks 116, TK-117, TK-118, and					Volatile Organic Compounds	Internal floating roof with mechanical shoe primary seal and a rim mounted secondary seal. Deck is welded with gaskets on all deck appurtenances. The tank bottoms shall be drain dry design $\hat{\epsilon}^{ee}$ any remaining heel will drain to a sump, which in turn can be emptied. The floating roof shall be equipped with a connection to a vapor recovery system such that vapors from under a		
TX-0756	FACILITY	(CCI) CORPUS C	PSDTX1388		42.006	7	44282000	gal/yr/tank	(VOC)	landed roof may be directed to a control device.	6.38	LB/HR

r	CCI CORPUS				· · · · · · · · · · · · · · · · · · ·	1	1				1
	CHRISTI	CASTLETON									
	CONDENSATE	COMMODITIES		Storage Tanks, TK-				Volatile Organic			
	SPLITTER	INTERNATIONAL	116072 AND	107, TK-108, TK-				-	Material w/vapor press < 0.5 psia. Tanks are required to be painted white and		
	FACILITY		116072 AND PSDTX1388	109, 42.005	42.006	60200	gol/br	Compounds		4.2	LB/HR
TX-0756	CCI CORPUS	(CCI) CORPOS C	P3D1X1300	109, 42.005	42.006	60300	gal/hr	(VOC)	be equipped with submerged fill pipes	4.Z	LD/ HK
	CHRISTI	CASTLETON									
								Valatila Organia			
	CONDENSATE SPLITTER	COMMODITIES INTERNATIONAL	110072 410	Storage Tanks, TK-				Volatile Organic	Teacher and sectors due to a state of the sector of the sector of the sector of the sector of fills.		
				o ,	42.005	57000		Compounds	Tanks are required to be painted white and be equipped with submerged fill	2.07	1.0 (110
TX-0756	FACILITY CCI CORPUS	(CCI) CORPUS C	PSDTX1388	110, TK-111, TK-112	42.005	57960	gal/hr	(VOC)	pipes	3.07	LB/HR
	CHRISTI										
	CONDENSATE	CASTLETON COMMODITIES		Storage Tanks, TK-				Valatila Organia			
	SPLITTER	INTERNATIONAL	110072 410					Volatile Organic	Teacher and sectors due to a state of the sector of the sector of the sector of the sector of fills.		
TX-0756	FACILITY	-	PSDTX1388	113, TK-114, and TK- 115	42.005	47000000	gal/yr/tank	Compounds (VOC)	Tanks are required to be painted white and be equipped with submerged fill	0.85	LB/HR
1X-0750	CCI CORPUS	(CCI) CORPOS C	P3D1X1300	115	42.005	47000000	gdi/yr/tdrik	(VUC)	pipes	0.85	LD/ HK
	CHRISTI	CASTLETON									
	CONDENSATE	COMMODITIES						Volatile Organic			
	SPLITTER		110072 410	Masteriates Teals TK				-	Table is securized to be activitied within and be accidented within sub-secure of £10		
		INTERNATIONAL		Wastewater Tank, TK-	64.006	0000000		Compounds	Tank is required to be painted white and be equipped with submerged fill	0.01	1.0 (110
TX-0756	FACILITY CCI CORPUS	(CCI) CORPUS C	PSDTX1388	3	64.006	8000000	gallons/yr	(VOC)	pipes	0.01	LB/HR
	CHRISTI	CASTLETON									
	CONDENSATE		110072 410	Countin Tools				Volatile Organic	Table is security of the last sector to device and the security and with a schwarzer of \$10		
	SPLITTER	INTERNATIONAL		Spent Caustic Tank,	50.000	25000		Compounds	Tank is required to be painted white and be equipped with submerged fill	0.01	1.0 (110
TX-0756	FACILITY	(CCI) CORPUS C	PSDTX1388	ТК-4	50.009	35000	gallons/yr	(VOC)	pipes	0.01	LB/HR
									External floating roof with mechanical shoe primary seal and a rim mounted		
	CCI CORPUS	CACTURTON.							secondary seal. Deck is welded with gaskets on all deck appurtenances. The		
	CHRISTI	CASTLETON							tank bottoms shall be drain dry design â€" any remaining heel will drain to a		
	CONDENSATE	COMMODITIES		с. <u>т</u> і ти				Volatile Organic			
	SPLITTER	INTERNATIONAL		Storage Tanks, TK-				Compounds	a connection to a vapor recovery system such that vapors from under a		
TX-0756	FACILITY	(CCI) CORPUS C	PSDTX1388	120 and TK-121	42.006	1437817500	gal/yr/tank	(VOC)	landed roof may be directed to a control device.	5.43	LB/HR
				Floating Roof							
	CCI CORPUS			Storage Tanks -							
	CHRISTI	CASTLETON		Controlled							
	CONDENSATE	COMMODITIES		Maintenance,				Volatile Organic			
	SPLITTER	INTERNATIONAL	116072 AND	Startup and				Compounds	Vapor space under the landed floating roof is degassed to a flare meeting the		
TX-0756	FACILITY	(CCI) CORPUS C	PSDTX1388	Shutdown (MSS)	42.006	5000	scf/hr	(VOC)	requirements 40CFR60.18 until VOC concentration is 10,000 ppmv or less.	10000	PPMV
									Floating roof with mechanical shoe primary seals and secondary seals if the		
									tank will store products with VOC vapor pressure of 0.5 psia or greater.		
	L								Proper fitting and seal integrity for the floating roof is ensured through visual		
	PORT OF								inspections and any seal gap measurements specified in 40 CFR § 60.113b.		
	BEAUMONT										
	PETROLEUM	JEFFERSON	118901,						If the product stored has a VOC vapor pressure of 0.5 psia or greater,		
	TRANSLOAD	RAILPORT	GHGPSDTX1	Petroleum Liquids				Volatile Organic			
	TERMINAL	TERMINAL I TEXAS		Storage in Floating			l .	Compounds	routed to temporary control units for control with a minimum control		1.
TX-0772	(PBPTT)	LLC	PSDTX1	Roof Tanks	42.006	276565714	BBL/YR	(VOC)	efficiency of 98%.	289.13	T/YR
	PORT OF										
	BEAUMONT										
	PETROLEUM	JEFFERSON	118901,								
	TRANSLOAD	RAILPORT	GHGPSDTX1	Petroleum Liquids				Volatile Organic			
	TERMINAL	TERMINAL I TEXAS		Storage in Fixed Roof				Compounds			
TX-0772	(PBPTT)	LLC	PSDTX1	Tanks	42.005	47.62	BBL/YR	(VOC)	Tank uses submerged fill and is aluminum in color.	0.01	T/YR
	CORPUS		32769/	Petroleum Liquid				Volatile Organic			
	CHRISTI	NUSTAR LOGISTICS	PSDTX1258	Storage in Floating		1	1	Compounds		1	1
TX-0797	TERMINAL		M2/ 0-1238	0 0	42.006	146	MM BBL / YR	(VOC)	Petroleum products are stored in floating roof tanks.	24.37	T/YR

												r
TX-0799	BEAUMONT TERMINAL	PHILLIPS 66 PIPELINE LLC	18295, PSDTX1466, GHGPSDTX1 39	Storage Tanks -IFR	42.006	0			Volatile Organic Compounds (VOC)	IFR tanks (EPNs 169, 216, 218, 221, 230, 233, 234, 236, and 255) have a liquid- mounted primary seal. IFR tanks (EPNs 396 and 397) have a vapor-mounted primary seal and rim-mounted secondary seal. Methanol tanks (EPNs 300, 301, 302) have a mechanical shoe primary seal and rim-mounted secondary seal. All of these tanks are greater than 25 Mgal and store liquids with a TVP less than 11.0 psia, are painted white, and use submerged fill.	109.17	T/YR
	BEAUMONT	PHILLIPS 66	18295, PSDTX1466, GHGPSDTX1						Volatile Organic Compounds	All 68 EFR tanks are greater than 25 Mgal and store liquids with a TVP less than 11.0 psia. They have a mechanical shoe primary seal, rim-mounted secondary seal, and slotted guide poles with gasketed sliding covers pole sleeves, and pole wipers. All EFR tanks are painted white, with the exception of Tank 167, which is currently out of service. Tank 167 will be painted white		
TX-0799	TERMINAL	PIPELINE LLC	39	Storage Tanks - EFR	42.006	0			(VOC)	before it is returned to service. The 37 new tanks have drain dry design.	384.37	T/YR
TX-0799	BEAUMONT TERMINAL	PHILLIPS 66 PIPELINE LLC	18295, PSDTX1466, GHGPSDTX1 39	Storage Tanks - fixed roof	42.005	0			Volatile Organic Compounds (VOC)	Fixed-roof tanks (EPNs 168, 222, 225, 227,229, 254, 256, 257, 258, 259, 475, and 476) will use submerged fill and have white exterior surfaces. Fuel tanks (EPN DTK01 and GTK01) are horizontal fixed-roof design and will use submerged fill and have white or aluminum exterior surfaces.	72.5	T/YR
	BEAUMONT	PHILLIPS 66	18295, PSDTX1466, GHGPSDTX1	Storage Tanks					Volatile Organic Compounds	Landing, degassing, and refilling events will be controlled by a portable VCU or thermal oxidizer meeting TCEQ BACT. Degassing will begin within 24 hours		
TX-0799	TERMINAL	PIPELINE LLC	39	Floating Roof MSS	42.006	0			(VOC)	of roof landing. All new tanks have drain dry design.	28.83	T/YR
TX-0800		MARTIN OPERATING PARTNERSHIP L.P.	103976, PSDTX1406	Storage Tanks	42.006	3655	000	BBL/YR	Volatile Organic Compounds (VOC)	Crude/Condensate storage tanks will have capacities greater than 25,000 gallons. Crude/condensate has a vapor pressure greater than 0.5 psia at 95ŰF. The storage tanks will be white internal floating roof tanks with mechanical shoe seals. New tanks will be of drain-dry design.	57.42	T/YR
TX-0800		MARTIN OPERATING PARTNERSHIP L.P.	103976, PSDTX1406	Floating Roof Storage Tanks - Controlled Maintenance, Startup and Shutdown (MSS)	42.006	0			Volatile Organic Compounds (VOC)	Landing, degassing, and refilling events will be controlled by a VCU or carbon adsorption unit. Degassing will begin within 24 hours of roof landing. All new tanks will be of drain-dry design.	0.8	T/YR
TX-0811		INEOS OLIGOMERS USA LLC	136130 AND N250	SOCMI Floating Roof Storage Tanks	64.004	0			Volatile Organic Compounds (VOC)	A vapor recovery system captures all vapor under tank shell and routes them to a thermal oxidizer. For alpha olefins, product quality considerations dictate the use of a nitrogen blanketing system	0.01	T/YR
		INEOS OLIGOMERS								Fixed roof tanks: no add-on controls. Volatility of stock limited to 0.10 psia by permit condition. For alpha olefins, product quality considerations dictate the		,
TX-0811	OLEFINS PLANT	USA LLC	N250	Storage Tanks	64.004	0			(VOC)	use of a nitrogen blanketing system.	0.17	T/YR
TV 0040	CRUDE OIL PROCESSING	CORPUS CHRISTI	9342A, 9343A, PSDTX963M	Petroleum Liquid Storage in Floating	12.005				Compounds	Internal floating roof. Integrity of the floating roof seal must be verified through periodic visual inspections and seal gap measurements. The tank must be constructed with a drain dry sump, and an available connection to a		The
TX-0812	FACILITY	LLC MAGELLAN TERMINALS	1, GHGP 142261 AND	Roof tanks	42.006	0			(VOC) Volatile Organic Compounds	control device.	3.04	T/YR
TX-0825	TERMINAL	HOLDINGS, L.P.	142201 AND N254	storage tanks	49.006	0			(VOC)	dry floor design.	165	T/YR
	PASADENA	MAGELLAN TERMINALS	142261 AND N254	Internal floating roof storage tanks maintenance, startup, and shutdown	42.006	0			Volatile Organic Compounds (VOC)		26.28	T/YR
	PASADENA	MAGELLAN TERMINALS		Horizontal fixed roof storage tanks	42.005	0			Volatile Organic Compounds (VOC)	painted white, has submerged fill	0.37	T/YR

		1	1							T	1
TX-0825	PASADENA TERMINAL	MAGELLAN TERMINALS HOLDINGS, L.P.	142261 AND N254	Horizontal fixed roof storage tanks maintenance, start up, and shutdown	42.005	0		Volatile Organic Compounds (VOC)	Degassing and refilling losses will be controlled by vapor combustor with a 99.5% destruction efficiency.	26.28	T/YR
TX-0825	PASADENA TERMINAL	MAGELLAN TERMINALS HOLDINGS, L.P.	142261 AND N254	Tank Truck Loading	42.01	120000	GAL/HR	Volatile Organic Compounds (VOC)	All loading will be submerged fill and vented to a vapor recovery unit. Vapor collection system will operate with 100% capture efficiency and routed to vapor recovery unit	1	MG/LTR
TX-0825	PASADENA TERMINAL	MAGELLAN TERMINALS HOLDINGS, L.P.	142261 AND N254	Tank Truck Loading	42.01	120000	GAL/HR	Volatile Organic Compounds (VOC)	All loading will be submerged fill and vented to a vapor recovery unit. Air eliminator venting will result in emissions to the atmosphere at less than 3 lb/hr for air purging in truck tanks.	4.48	T/YR
TX-0825	PASADENA TERMINAL	MAGELLAN TERMINALS HOLDINGS, L.P.	142261 AND N254	Tank Truck Unloading	42.01	0		Volatile Organic Compounds (VOC)	Specialized connection system of transfer valves that minimize the volume of piping containing residual butane after unloading	33	T/YR
TX-0847	VALERO PORT ARTHUR REFINERY	PREMCOR REFINING GROUP	6825A, N65, PSDTX49M1, GHGPSDT	External Floating roof storage tanks	42.006	45000	BBL/HR	Volatile Organic Compounds (VOC)	Tanks will be equipped with Mechanical shoe seal with a secondary rim mounted seal. Tanks equipped with slotted guidepoles with gasketed sliding covers, either pole sleeves or floats, and wipers. Tanks will also be		
	VALERO PORT ARTHUR REFINERY	PREMCOR REFINING GROUP	6825A, N65,	Coker sludge feed tanks	42.005	12000	GAL/HR	Volatile Organic Compounds (VOC)		100	PPM
*TX-0858	GULF COAST GROWTH VENTURES	GCGV ASSET HOLDING LLC	146425, PSDTX1518, GHGPSDTX1 70	Fixed Roof Tanks	64.004	0	Unit of the second s		painted white and employ bottom or submerged fill. Storage tanks with capacities less than 25,000 gallons which store stocks with a VOC vapor pressure of less than 0.50 psia are exempt	0	
*TX-0858	GULF COAST GROWTH VENTURES PROJECT	GCGV ASSET HOLDING LLC	146425, PSDTX1518, GHGPSDTX1 70	Floating Roof Tanks	64.004	0		Volatile Organic Compounds (VOC)	internal floating roof with a welded deck. Floating roof tanks must be designed with a sump whose drain pipe discharges to no more than one diameter above the bottom of the sump, and must be designed with a connection to a control device for use during floating roof landings	0	
VA-0313	TRANSMONTAI GNE NORFOLK TERMINAL	TRANSMONTAIGN E OPERATING COMPANY LP	60242	Storage Tank Breathing, Working, and Floating Roof Landing Losses (including emergency roof landings)	42.006	0		Volatile Organic Compounds (VOC)		114.1	T/YR

RBLC Search Results (VOC - Cooling Towers)

RBLCID	FACILITY NAME	CORPORATE OR COMPANY NAME	PERMIT NUM	PROCESS NAME	PROCCESS TYPE	PRIMARY FUEL	THROUGH- PUT	THROUGH- PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT
FL-0318	HIGHLANDS ETHANOL FACILITY	VERENIUM	PSD-FL- 406 (0550061-001- AC)	Cooling Tower	99.009		22500	GAL/MIN	Volatile Organic Compounds (VOC)	The cooling tower shall be constructed to achieve the specified drift rate of no more than 0.0005 percent of the circulating water flow rate.	4.1	T/YR
FL-0332	HIGHLANDS BIOREFINERY AND COGENERATION PLANT	HIGHLANDS ENVIROFUELS (HEF), LLC	PSD-FL-416, 0550063-001- AC	Cooling Towers (miscellaneous machinery)	12.12		0		Volatile Organic Compounds (VOC)	The permittee shall control VOC emissions by promptly repairing any leaking components in accordance with the approved LDAR plan. The permittee shall collect a sample of cooling water on a weekly basis from miscellaneous machinery and process equipment cooling towers and analyze it for VOCs to enable the early detection of leaking heat exchangers and thereby minimizing VOC emissions from the cooling towers.	0.001	% WATER FLOW RATE
IA-0102	DAVENPORT WORKS	ALCOA, INC.	11-322	Cooling Towers	99.999		3000	GAL/MIN	Volatile Organic Compounds (VOC)	Facility is required to limit the amount of VOC in water treatment chemicals and the use of those chemicals. In addition the cooling towers have drift eliminators as control.	0	
IA-0106	CF INDUSTRIES NITROGEN, LLC - PORT NEAL NITROGEN COMPLEX	CF INDUSTRIES NITROGEN, LLC	PN 13-037	Cooling Towers	99.009		0		Volatile Organic Compounds (VOC)	limit the amount of VOC in treatment chemicals and a drift eliminator	0	
IN-0202	IPL EAGLE VALLEY GENERATING STATION	IPL EAGLE VALLEY GENERATING STATION	109-32471- 00004	COOLING TOWER EU-7	99.999	WATER	192000	GPM	Volatile Organic Compounds (VOC)		4.8	G/BHP-H
LA-0213	ST. CHARLES REFINERY	VALERO REFINING - NEW ORLEANS, LLC	PSD-LA- 619(M5)	COOLING TOWERS (13-81, 2004-6, 2005-42, 2005-43, 2008-35)	99.009				Volatile Organic Compounds (VOC)	MONITORING PROCESS SIDE OF THE HEAT EXCHANGERS FOR LEAKS 2008-35: VOC MONITORING PROGRAM MEETS 40 CFR 63 SUBPART F	0	
LA-0246	ST. CHARLES REFINERY	VALERO REFINING - NEW ORLEANS, LLC	PSD-LA- 619(M6)	EQT0010 - Cooling Tower 403	50.999		61250	GAL/MIN	Volatile Organic Compounds (VOC)	Monitoring VOC concentration in cooling water	76	LB/H
LA-0246	ST. CHARLES REFINERY	VALERO REFINING - NEW ORLEANS, LLC	PSD-LA- 619(M6)	EQT0035 - Cooling Tower CT-600	50.999		45000	GAL/MIN	Volatile Organic Compounds (VOC)	Monitoring VOC concentration in cooling water	55.84	LB/H
LA-0246	ST. CHARLES REFINERY	VALERO REFINING - NEW ORLEANS, LLC	PSD-LA- 619(M6)	EQT0243 - HCU Cooling Tower	50.999		50000	GAL/MIN	Volatile Organic Compounds (VOC)	Monitoring VOC concentration in cooling water	62.04	LB/H
LA-0246	ST. CHARLES REFINERY	VALERO REFINING - NEW ORLEANS, LLC	PSD-LA- 619(M6)	EQT0244 - New West Cooling Tower	50.999		40000	GAL/MIN	Volatile Organic Compounds (VOC)	Monitoring VOC concentration in cooling water	49.63	LB/H
LA-0277	COMONIMER-1 UNIT	SASOL CHEMICALS (USA) LLC	PSD-LA-814	Cooling Tower Y12- 800	64.999		15200	gpm	Volatile Organic Compounds (VOC)	Comply with requirements of 40 CFR 63.104	0	
LA-0295	WESTLAKE FACILITY	EQUISTAR CHEMICALS, LP	PSD-LA-806	CGP Unit Cooling Tower (3-03, EQT 15)	99.009		3000	GPM	Volatile Organic Compounds (VOC)	Monthly hydrocarbon monitoring; maintain equipment to minimize fugitive emissions; repair faulty equipment at the earliest opportunity, but no later than the next scheduled unit shutdown	0.13	LB/H
LA-0314	INDORAMA LAKE CHARLES FACILITY	INDORAMA VENTURES OLEFINS, LLC	PSD-LA-813	cooling towers - 007	99.009		86500	gpm	Volatile Organic Compounds (VOC)	monitored as required by 40 CFR 63 subpart XX	0	20711
*LA-0315	G2G PLANT	BIG LAKE FUELS LLC	PSD-LA-781	Cooling Tower	99.009		6472902	GPM	Volatile Organic Compounds (VOC)	Monthly VOC monitoring	4.53	LB/H
LA-0319	LAKE CHARLES CHEMICAL COMPLEX - COMONOMER-1 UNIT	(USA) LLC	PSD-LA-814	cooling tower y12- 800	99.009		0		Volatile Organic Compounds (VOC)	Complying with 40 CFR 63.104	0	
*LA-0334	ST. CHARLES REFINERY	VALERO REFINING COMPANY - NEW ORLEANS LLC	PSD-LA-826	EQT0244 Alky Cooling Tower (2005-43)	50.999		40	GAL/MIN	Volatile Organic Compounds (VOC)	COMPLY WITH 40 CFR 63 SUBPART F	0	

RBLC Search Results (VOC - Cooling Towers)

	FACILITY NAME	CORPORATE OR COMPANY NAME	PERMIT NUM	PROCESS NAME	PROCCESS TYPE	PRIMARY FUEL	THROUGH- PUT	THROUGH- PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT
MS-0092	EMBERCLEAR GTL MS	EMBERCLEAR GTL MS LLC	0040-00055	Cooling tower, Induced draft	99.009		1420	GAL/MIN	Volatile Organic Compounds (VOC)	Monthly strippable VOC monitoring (modified El Paso Method)	0.7	LB VOC/MMG L WATER
OH-0378	PTTGCA PETROCHEMICAL COMPLEX	PTTGCA PETROCHEMICAL COMPLEX	P0124972	Cooling Tower (P011)	99.009		13.88	MMGAL/H	Volatile Organic Compounds (VOC)	 (a) ZOC content in cooling water shall not exceed a concentration of 0.7 lb/MMgal; (b) Zompliance with heat exchange leak monitoring and repair requirements for affected ethylene manufacturing process units contained in 40 CFR Part 63 Subpart XX 	42.55	T/YR
PA-0312	MONROE ENERGY LLC/TRAINER	MONROE ENERGY, LLC	23-0003Z	Cooling Tower 1	50.999		12050	gal/min	Volatile Organic Compounds (VOC)	Annual average VOC concentration in the recirculating cooling water shall not exceed 31 ppmw calculated monthly and averaged on a 12 month rolling basis	31	PPMW
PA-0312	MONROE ENERGY LLC/TRAINER	MONROE ENERGY, LLC	23-0003Z	FCC Cooling Tower	50.999		28500	gal/min	Volatile Organic Compounds (VOC)	Annual average VOC concentration in the recirculating cooling water shall not exceed 31 ppmw calculated monthly and averaged on a 12 month rolling basis	31	PPMW
PA-0312	MONROE ENERGY LLC/TRAINER	MONROE ENERGY, LLC	23-0003Z	Crude Cooling Tower	50.999		36850	gal/min	Volatile Organic Compounds (VOC)	Annual average VOC concentration in the recirculating cooling water shall not exceed 31 ppmw calculated monthly and averaged on a 12 month rolling basis	31	PPMW
SC-0182	FIBER INDUSTRIES LLC	FIBER INDUSTRIES LLC	0820- 0079.CA.R2	Cooling Towers	63.028		0		Volatile Organic Compounds (VOC)	Non-Contact System Design	0	
SC-0183	NUCOR STEEL - BERKELEY	NUCOR STEEL	0420-0060-DX	Cooling Towers	81.29		0		Volatile Organic Compounds (VOC)	Proper Operation and Maintenance	0.23	ТРҮ
SC-0183	NUCOR STEEL - BERKELEY	NUCOR STEEL	0420-0060-DX	Cooling Towers (contact cooling tower)	81.29		0		Volatile Organic Compounds (VOC)	Proper Operation and Maintenance	0.044	ТРҮ
TX-0575	SABINA PETROCHEMICALS LLC	SABINA PETROCHEMICALS LLC	41945, N018M1	COOLING TOWER	50.007	N/A	73000	GAL/MIN	Volatile Organic Compounds (VOC)	THE COOLING TOWER, EPN CT, HAS A NON-CONTACT DESIGN, UTILIZES MONTHLY MONITORING OF VOC IN WATER PER APPENDIX P OR APPROVED EQUIVALENT AND IDENTIFIED LEAKS ARE REPAIRED AS SOON AS POSSIBLE, BUT BEFORE NEXT SCHEDULED SHUTDOWN.	13.43	T/YR
TX-0656	GAS TO GASOLINE PLANT	NATGASOLINE	PSDTX1340 AND 107764	Cooling Tower	50.002		99000	MM GAL/YR	Volatile Organic Compounds (VOC)	DRIFT ELIMINATORS, MONITOR TDS OR CONDUCTIVITY	0.08	РРМ
*TX-0657	BEAUMONT GAS TO GASOLINE PLANT	NATGASOLINE LLC	PSDTX1340 AND 107764	cooling tower	50.002		99000000	gallons/yr	Volatile Organic Compounds (VOC)	Monthly monitoring of VOC not to exceed 0.08 ppmw	0.08	PPMW
TX-0711	CELANESE CLEAR LAKE PLANT	CELANESE LTD	103626, N164, PSDTX1296	Cooling Tower	99.999		0		Volatile Organic Compounds (VOC)		0	
TX-0754	PROPANE		100787 AND	Cooling Tower	99.009		75000	gallons per minute	Volatile Organic Compounds (VOC)	Non-contact design, drift eliminators with drift of 0.0005%	0.05	РРМ
TX-0756	CCI CORPUS CHRISTI CONDENSATE SPLITTER FACILITY	CASTLETON COMMODITIES INTERNATIONAL (CCI) CORPUS C	116072 AND PSDTX1388	Cooling Tower	99.009		900000	gal/hr	Volatile Organic Compounds (VOC)	no contact. low drift	0.6	LB/HR

RBLCID	FACILITY NAME	CORPORATE OR COMPANY NAME	PERMIT NUM	PROCESS NAME	PROCCESS TYPE	PRIMARY FUEL	THROUGH- PUT	THROUGH- PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT
TX-0774	BISHOP FACILITY	TICONA POLYMERS, INC.	123216, PSDTX1438 AND GHGPSDTX	Cooling Tower	99.009		10400		Volatile Organic Compounds (VOC)	Minimize VOC leaks into cooling water	3.64	ТРҮ
TX-0815	PORT ARTHUR ETHANE SIDE CRACKER	TOTAL PETROCHEMICALS & REFINING USA, INC.	122353, PSDTX1426, GHGPSDTX114	Cooling Tower	99.009		0		Volatile Organic Compounds (VOC)	cooling water VOC concentration NON CONTACT	27.95	T/YR
TX-0823	LYONDELL CHEMICAL BAYPORT CHOATE PLANT	LYONDELL CHEMICAL COMPANY	137789 AND N244	COOLING TOWERS	64.999		0		Volatile Organic Compounds (VOC)	VOC leak detection system to identify leaks into the cooling water.	4.05	T/YR
TX-0847	VALERO PORT ARTHUR REFINERY	PREMCOR REFINING GROUP	6825A, N65, PSDTX49M1, GHGPSDT	Cooling Towers/Heat Exchange System	50.002		0		Volatile Organic Compounds (VOC)	NONCONTACT	0.08	PPMW
*TX-0858	GULF COAST GROWTH VENTURES PROJECT	GCGV ASSET HOLDING LLC	146425, PSDTX1518, GHGPSDTX170	Cooling Tower	64.003		0		Volatile Organic Compounds (VOC)	Weekly sampling of cooling water for strippable VOC. Corrective action must be taken if total strippable hydrocarbon content of the cooling water exceeds 0.08 ppmw equivalent, and delay of repair procedures cannot be used if the strippable hydrocarbon content exceeds 0.8 ppmw. Additionally, the permit specifies that a cooling water concentration qualifying as a leak under MACT XX is also a leak for purposes of permit compliance		PPMW
*TX-0861	BUCKEYE TEXAS PROCESSING CORPUS CHRISTI FACILITY	BUCKEYE TEXAS PROCESSING, LLC	109923, PSDTX1502, AND GHGPSDT	Cooling Tower	99.009		3000	GPM	Volatile Organic Compounds (VOC)	no contact design	0.08	PPMW
*TX-0863	POLYETHYLENE 7 FACILITY	THE DOW CHEMICAL COMPANY	153106 AND N268	COOLING TOWER	99.009		0		Volatile Organic Compounds (VOC)	Monthly monitoring cooling water for VOC content	0	
*TX-0864	EQUISTAR CHEMICALS CHANNELVIEW COMPLEX	EQUISTAR CHEMICALS, LP	N266, PSDTX1542, GHGPSDTX183	Cooling Tower	99.009		0		Volatile Organic Compounds (VOC)	nondirect	0	
*TX-0865	EQUISTAR CHEMICALS CHANNELVIEW COMPLEX	EQUISTAR CHEMICALS, LP	N264, PSDTX1540, GHGPSDTX182	COOLING TOWER	99.009		0		Volatile Organic Compounds (VOC)	INDIRECT DESIGN	42	PPBW
*WI-0286	SIO INTERNATIONAL WISCONSIN, INC ENERGY PLANT	SIO INTERNATIONAL	18-JJW-022	P41 – Cooling Tower	90.009		0		Volatile Organic Compounds (VOC)	The available options described for controlling visible emissions are generally the controls for controlling particulate matter emissions.	10	% OPACITY

	FACILITY NAME	CORPORATE	PERMIT	DDOCECC NAME	PROCCESS	PRIMARY	THROUGH-	THROUGH-	DOLLUTANT	CONTROL METHOD DECODIDITION	EMISSION	EMISSION
RBLCID	FACILITY NAME	OR COMPANY NAME	NUM	PROCESS NAME	ТҮРЕ	FUEL	PUT	PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	LIMIT 1	LIMIT 1 UNIT
	KENAI NITROGEN	AGRIUM U.S.	AQ0083CPT	2 Cell Cross-Flow				gallons per	Particulate			
4K-0083	OPERATIONS	INC.	06	Cooling Tower	99.11		15000	minute	matter, fugitive	High Efficiency Drift Eliminators	0.002	% DRIFT
	NULCOD CERTIN		1050450	m G 11					Particulate			
*EI 0260	NUCOR STEEL FLORIDA FACILITY	NUCOR STEEL FLORIDA, INC.	1050472- 001-AC	Two Cooling Towers	99.009		19650	gal/min	matter, total (TPM)	Drift eliminators	0.001	% DRIFT RATE
11-0300	FLORIDA FACILITI	FLORIDA, INC.	001-AC	1000013	55.005		17030	gai/ iiiii			0.001	70 DRIPT RATE
	WARREN COUNTY	OGETHORPE	4911-301-						Particulate			%
	BIOMASS ENERGY	POWER	0016-P-01-						matter, filterable			EFFECTIVENES
GA-0141	FACILITY	CORPERATION	0	Cooling Tower	99.009		0		(FPM)	Drift Eliminators	0.0005	S
		IOWA							Particulate			
	IOWA FERTILIZER	FERTILIZER	10.010	G 11 M	(1.000		0		matter, total		0.0005	
A-0105	COMPANY	COMPANY	12-219	Cooling Tower	61.999		0		(TPM)	drift eliminator	0.0005	%
	CF INDUSTRIES								De die 1ste			
	NITROGEN, LLC - PORT NEAL	CF INDUSTRIES							Particulate matter, total			
IA-0106			PN 13-037	Cooling Towers	99.009		0		(TPM)	drift eliminator	0.0005	%
			11110 007	cooling remeils	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0		()		0.0000	70
		CRONUS							Particulate			
	,	CHEMICALS,								drift eliminators; TDS of water not to		% LOSS FROM
IL-0114	LLC	LLC	13060007	Cooling Tower	61.012		0		(FPM)	exceed 2000 mg/l	0.0005	CIRC.
		STEEL		TOWER:								
		DYNAMICS, INC.	-	ROLLING						DRIFT ELIMINATOR; DO NOT USE		
	STEEL DYNAMICS,	STRUCTURAL	100 05445	MILL/CASTER					Particulate	CHROMIUM-BASED WATER		
IN-0156	INC STRUCTURAL AND RAIL DIVISION	AND RAIL DIVISION	183-27145- 00030	(NON-CONTACT) ID#15E	99.009		18000	GAL/MIN	(FPM)	TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.	0.003	% DRIFT RATE
111-0150	AND KAIL DIVISION		00030		55.005		10000	GAL/ MIN		THE COOLING TOWERS.	0.003	70 DRIFT RATE
		STEEL DYNAMICS, INC		COOLING TOWER: CASTER						DRIFT ELIMINATOR;		
	STEEL DYNAMICS,	STRUCTURAL		SPRAYS					Particulate	DO NOT USE CHROMIUM-BASED		
	INC STRUCTURAL	AND RAIL	183-27145-	(CONTACT)						WATER TREATMENT CHEMICALS IN		
IN-0156	AND RAIL DIVISION	DIVISION	00030	ID#15F	99.009		3500	GAL/MIN	(FPM)	ANY OF THE COOLING TOWERS.	0.001	% DRIFT RATE
		STEEL		COOLING								
		DYNAMICS, INC.	-	TOWER:						DRIFT ELIMINATOR;		
	STEEL DYNAMICS,	STRUCTURAL		ROLLING MILL					Particulate	DO NOT USE CHROMIUM-BASED		
	INC STRUCTURAL	AND RAIL	183-27145-	(CONTACT)					matter, filterable	WATER TREATMENT CHEMICALS IN		
IN-0156	AND RAIL DIVISION	DIVISION	00030	ID#15A	99.009		8000	GAL/MIN	(FPM)	ANY OF THE COOLING TOWERS.	0.001	% DRIFT RATE
		STEEL		COOLING								
	STEEL DYNAMICS,	DYNAMICS, INC STRUCTURAL		TOWER: LVD BOILER					Particulate	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED		
	INC STRUCTURAL	AND RAIL	183-27145-	(CONTACT)						WATER TREATMENT CHEMICALS IN		
IN-0156	AND RAIL DIVISION	DIVISION	00030	ID#15G	99.009		2500	GAL/MIN	(FPM)	ANY OF THE COOLING TOWERS.	0.005	% DRIFT RATE
		STEEL		COOLING					È í	DRIFT ELIMINATOR;		
		DYNAMICS, INC.	4	TOWER:						DO NOT USE CHROMIUM-BASED		
	STEEL DYNAMICS,	STRUCTURAL		ROLLING MILL					Particulate	WATER		
	INC STRUCTURAL	AND RAIL	183-27145-	(CONTACT)						TREATMENT CHEMICALS IN ANY OF		
IN-0156	AND RAIL DIVISION	DIVISION	00030	ID#15B	99.009		4000	GAL/MIN	(FPM)	THE COOLING TOWERS	0.001	% DRIFT RATE
		STEEL		COOLING								
	CTEEL DVNAMOC	DYNAMICS, INC.	1	TOWER:					Deutieulet	DRIFT ELIMINATOR;		
	STEEL DYNAMICS, INC STRUCTURAL	STRUCTURAL AND RAIL	183-27145-	ROLLING MILL ID#15C					Particulate	DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN		
	AND RAIL DIVISION	DIVISION	00030		99.009	1	81250	GAL/MIN	(FPM)	ANY OF THE COOLING TOWERS.	0.001	% DRIFT RATE

DBI CID	FACILITY NAME	CORPORATE OR COMPANY	PERMIT	PROCESS NAME	PROCCESS		THROUGH-		POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION	EMISSION
KBLCID	FACILITYNAME	NAME	NUM	FROCESS NAME	ТҮРЕ	FUEL	PUT	PUT UNIT	FOLLOTANT	CONTROL METHOD DESCRIPTION	LIMIT 1	LIMIT 1 UNIT
		STEEL										
		DYNAMICS, INC.		COOLING						DRIFT ELIMINATOR;		
	STEEL DYNAMICS,	STRUCTURAL	100.05445	TOWER: #1 CAST					Particulate	DO NOT USE CHROMIUM-BASED		
	INC STRUCTURAL AND RAIL DIVISION	AND RAIL DIVISION	183-27145- 00030	ID#15D	99.009		5000	GAL/MIN	matter, filterable	WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS	0.001	% DRAFT RATI
IN-0156	AND KAIL DIVISION	DIVISION	00030	(CONTACT)	99.009		5000	GAL/MIN	(FPM)	ANY OF THE COOLING TOWERS	0.001	% DRAFT RATI
		ST. JOSEPH		TWO (2)					Particulate			
	ST. JOSEPH ENEGRY	ENERGY	141-31003-	COOLING					matter, filterable			
IN-0158	CENTER, LLC	CENTER, LLC	00579	TOWERS	99.009		170000	GAL/MIN	(FPM)	DRIFT ELIMINATOR	0.0005	% DRIFT LOSS
								GAL/MIN OF	Particulate			
		MAGNETATION	181-32081-					CIRCULATIN				% MAXIMUM
IN-0167	MAGNETATION LLC	LLC	00054	COOLING TOWER	99.009		4600	G WATER	(FPM)	DRIFT EMILINATORS	0.001	DRIFT RATE
	MIDWEST	MIDWEST		TEN CELL					Particulate			
	FERTILIZER	FERTILIZER	129-33576-	EVAPORATIVE					matter, filterable	HIGH EFFICIENCY DRIFT		
IN-0173	CORPORATION	CORPORATION	00059	COOLING TOWER	99.009		147937	GPM	(FPM)	ELIMINATORS	0.0005	% DRIFT LOSS
	MIDWEST	MIDWEST		SIX CELL					Particulate			
	FERTILIZER	FERTILIZER		EVAPORATIVE						HIGH EFFICIENCY DRIFT		
IN-0173	CORPORATION	CORPORATION	00059	COOLING TOWER	99.009		88762	GPM	(FPM)	ELIMINATORS	0.0005	% DRIFT LOSS
		OHIO VALLEY		TWO (2)				2016	Particulate			
IN 0170	OHIO VALLEY RESOURCES, LLC	RESOURCES, LLC	147-32322- 00062	TOWERS	99.009		179720	GPM, COMBINED		HIGH EFFICIENCY DRIFT ELIMINATORS	0.0005	% DRIFT
IN-0179	MIDWEST	MIDWEST	00062	TEN CELL	99.009		179720	COMBINED	(FPM)	ELIMINATORS	0.0005	% DRIFT
	FERTILIZER	FERTILIZER	120 22576	EVAPORATIVE					Particulate	HIGH EFFICIENCY DRIFT		
IN-0180	CORPORATION	CORPORATION	00059	COOLING TOWER	99,009		147937	GPM	(FPM)	ELIMINATORS	0.0005	% DRIFT LOSS
111 0100	MIDWEST	MIDWEST	00039	SIX CELL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11/ 55/	di M	Particulate		0.0005	70 DIGI 1 1000
	FERTILIZER	FERTILIZER	129-33576-	EVAPORATIVE						HIGH EFFICIENCY DRIFT		
IN-0180	CORPORATION	CORPORATION	00059	COOLING TOWER	99.009		88762	GPM	(FPM)	ELIMINATORS	0.0005	% DRIFT LOSS
				HOT MILL					Particulate			
			107-36834-	CONTACT					matter, filterable			
IN-0255	NUCOR STEEL	NUCOR STEEL	00038	COOLING TOWER	99.999	NA	25000	GAL/MIN	(FPM)	DRIFT ELIMINATORS	0.001	% DRIFT
		THE EMPIRE										
	THE EMPIRE	DISTRICT							Particulate			
	DISTRICT ELECTRIC	ELECTRIC		Mechanical draft					matter, total	high efficiency drift eliminators		
KS-0029	COMPANY	COMPANY	C-12987	cooling tower	99.009		0		(TPM)	(integral part of the design)	0.0005	% DRIFT RATE
		WOLVERINE POWER SUPPLY		Cooling Tower					Particulate			
		COOPERATIVE,		(EUCOOLINGTW					matter, filterable			
MI-0400	WOLVERINE POWER	INC.	317-07	R)	99.009		0		(FPM)	Drift eliminators	0.0005	%
0100	WOLVERINETOWER	VC ENERGY LLC	517 07	()	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		Ŭ		(11 M)		0.0005	70
		MIDLAND							Particulate			
	MIDLAND POWER	POWER							matter, filterable			% DRIFT LOSS
MI-0401	STATION	STATION LLC	24-11B	Cooling Tower	99.009		0		(FPM)	High efficiency drift eliminators	0.0005	RATE
		FILER CITY		EUCOOLTWR								
		STATION		(Cooling Tower			1		Particulate			
		LIMITED		Wet Mechanical			1		matter, filterable			
	FILER CITY STATION	PARTNERSHIP	66-17	Drift)	99.009		0		(FPM)	Mist/Drift Eliminators	0.0006	%
MI-0427	THEER CIT I STATION											
MI-0427	EMBERCLEAR GTL	EMBERCLEAR	0040-	Cooling tower,					Particulate matter, total			

RBLC Sea	rch Results (PM - Cool	ling Tower)										
RBLCID	FACILITY NAME	CORPORATE OR COMPANY NAME	PERMIT NUM	PROCESS NAME	PROCCESS TYPE	PRIMARY FUEL	THROUGH- PUT	THROUGH- PUT UNIT	POLLUTANT	CONTROL METHOD DESCRIPTION	EMISSION LIMIT 1	EMISSION LIMIT 1 UNIT
		AG PROCESSING							Particulate			
		INC., A							matter, total	drift loss design specification and TDS		
*NE-0059	AGP SOY	COOPERATIVE	CP14-007	Cooling Tower	99.009		360000	gal/hr	(TPM)	concentration limit	0.0005	%
									Particulate			
*00.0100	MERCEDES BENZ	MERCEDES	0560-0385-		44.000		101000	1.0	matter, total		0.001	
*SC-0193	VANS, LLC	BENZ VANS, LLC PANDA	CA	Cooling Towers	41.002		484900	gal/hr	(TPM) Particulate		0.001	% DRIFT RATE
	PANDA SHERMAN	SHERMAN										
	PANDA SHERMAN POWER STATION	POWER LLC	DCDTV1100	Cooling tower	99.009		0		matter, total (TPM)	Drift eliminators	0.0005	% DRIFT
17-0331	FOWERSTATION	FOWERLEC	F3D1A1190	cooning tower	99.009		0				0.0003	70 DRIFT
		STARK POWER							Particulate			
	WOLF HOLLOW	GENERATION II							matter, total			
TX-0552	POWER PLANT NO. 2		PSDTX1110	Cooling tower	99.009		0		(TPM)	Drift eliminators	0.0005	% DRIFT
	LINDALE	LINDALE					-		Particulate			
	RENEWABLE	RENEWABLE							matter, total			
TX-0553	ENERGY	ENERGY LLC	PSDTX1184	Cooling tower	99.009		0		(TPM)	Drift eliminators	0.0005	% DRIFT
	BEAUMONT GAS TO GASOLINE PLANT	NATGASOLINE LLC	PSDTX1340 AND 107764	cooling tower	50.002		99000000	gallons/yr	Particulate matter, total (TPM)	Drift eliminators (limit 0.001 % drift)and monitoring of TDS or conductivity Emission Limit for PM is 82.57 tpy Emission Limit for PM10 is 1.28 tpy Emission Limit for PM2.5 is 0.03 tpy	0.001	% DRIFT
	EQUISTAR		PSDTX1542									
	CHEMICALS								Particulate			
	CHANNELVIEW	EQUISTAR	GHGPSDTX						matter, total			
*TX-0864	COMPLEX	CHEMICALS, LP	183	Cooling Tower	99.009		0		(TPM)	drift eliminators	0.005	% DRIFT
	SPECIALTY MINERALS INC	SPECIALTY MINERALS INC.	00 DCT 05 -	P30 - DIRECT CONTACT SCRUBBER WITH	(2.000				Particulate	HIGH EFFICIENCY MIST / DRIFT ELIMINATOR (WITH ADDITIONAL	0.0007	% CIRCULATION
	SUPERIOR	(SMI)	09-DCF-251	COOLING TOWER	62.999		515	GAL/MIN	Matter (PM)	LAYER), LIMITS ON % SOLIDS	0.0005	DRIFT
	SPECIALTY MINERALS INC	SPECIALTY MINERALS INC.	1	P40, P50 - COOLING					Particulate	HIGH EFFICIENCY MIST / DRIFT		% CIRCULATION
WI 0252	MINERALS INC SUPERIOR	(SMI)	09-DCF-251		62.999		700	GAL/MIN	Particulate Matter (PM)	ELIMINATORS (W/ ADDITIONAL LAYER)	0.0005	DRIFT
vv1-0252	SUPERIUK	(SWII)	U9-DCF-251	TOWERS	02.999		/00	GAL/MIN	matter (PM)	LAIENJ	0.0005	DRIFI
	SPECIALTY MINERALS INC SUPERIOR	SPECIALTY MINERALS INC. (SMI)	09-DCF-251	P60 - COOLING TOWER	62.999		200	GAL/MIN	Particulate Matter (PM)	HIGH EFFICIENCY MIST / DRIFT ELIMINATORS (W/ ADDITIONAL LAYER); DISSOLVED SOLIDS LIMIT	0.0005	% CIRCULATION DRIFT

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT Best Available Control Technology (BACT) Guidelines for Non-Major Polluting Facilities*

10-20-2000 Rev. 0 12-5-2003 Rev. 1

Equipment or Process: Reactor with Atmospheric Vent^{a)}

		Criteria	Pollutants			
Rating/Size	VOC/ODC	NOx	SOx	CO	PM 10	Inorganic
	- Carbon Adsorber; or					
All	- Afterburner (VOC Only);					
	or					
	- Refrigerated Condenser;					
	or					
	- Scrubber with Approved					
	Liquid Waste Disposal					
	(VOC only)					
	(1990)					

a) Also see "Resin Manufacturing" and "Surfactant Manufacturing". (12-5-2003)

* Means those facilities that are not major polluting facilities as defined by Rule 1302 - Definitions

About Our Work Resources Business Assistance Rulemaking News

BACT Determination Detail

Category

Source Category:	Storage Tanks: 20,000 gallons or greater
SIC Code	3795
NAICS Code	493

Emission Unit Information

Manufacturer:	
Туре:	
Model:	
Equipment Description:	
Capacity / Dimentions	
Fuel Type	Other
Multiple Fuel Types	

Function of Equipment

Operating Schedule	Variable (/ /)
(hours/day)/(days/week)/	
(weeks/year)e	

Store organic liquid prior to distribution to customers

Project / Permit Information

Application/Permit No.:	353730
Application Completeness Date:	
New Construction/Modification:	New Construction
ATC Date:	09-09-1999
PTO Date:	
Startup Date:	01-31-2000
Technology Status:	BACT Determination
Source Test Available:	No
Source Test Results:	

Facility / District Information

Facility Name:

Van Waters and rogers

Facility Zip Code:

90040

https://ww3.arb.ca.gov/bact/bactnew/determination.php?var=650

Facility County:	Los Angeles
District Name:	South Coast AQMD
District Contact:	Martin Kay
Contact Phone No .:	909-396-3115
Contact E-Mail:	mkay@aqmd.gov

Notes

Notes:

Permit limit: Maximum volume filled into all the storge tanks at the facility shall not exceed 6,327,000 gallons in any one year. Materials with an initial boiling point greater than 150 C, or vapor pressure less than 0.10 psia at 70 F are not counted towards the 6,327,000 gal/year throughput limit. No carcinogenic materials as identified in AQMD Rule 1401 shall be stored in the tanks. The vapor pressure of storage tanks 1-15 shall not exceed that of hexane, except for exempt compounds. The vapor pressure of storage tanks P,Q,T not to exceed that of methanol. All 18 organic storage tanks will be vented to the thermal oxidizer. The assumed overall efficiency of the thermal oxidizer is 95% VOC control. A temp of not less than 1,400 F will be maintained in the thermal oxidizer when the equipment it serves is in operation, and no liquid wastes will be burned in the thermal oxidizer.

Report Error In Determination

CONTACT US

(800) 242-4450 | helpline@arb.ca.gov 1001 | Street, Sacramento, CA 95814 P.O. Box 2815, Sacramento, CA 95812

California Governor Gavin Newsom Visit Governor's Website

Secretary for Environmental Protection

ACCESSIBILITY PRIVACY POLICY CONDITIONS OF USE LOCAL AIR DISTRICTS REGISTER TO VOTE

BAY AREA AIR QUALITY MANAGEMENT DISTRICT Best Available Control Technology (BACT) Guideline

Source Category

Sauraa	Source: Storage Tank - Fixed Roof, Organic Liquids		2
Source:	Storage Tank - Fixea Kooj, Organic Liquias	Document #:	167.3.1
Class:	<u>></u> 20,000 Gallons	Date:	03/03/95

Determination

POLLUTANT	BACT 1. Technologically Feasible/ Cost Effective 2. Achieved in Practice	TYPICAL TECHNOLOGY
POC	1. n/d 2. Vapor recovery system w/ an overall system efficiency $\geq 98\%^{a,T}$	 n/d Thermal Incinerator; or Carbon Adsorber; or Refrigerated Condenser; or BAAQMD approved equivalent^{a,T}
NOx	1. n/a 2. n/a	1. n/a 2. n/a
SO ₂	1. n/a 2. n/a	1. n/a 2. n/a
СО	1. n/a 2. n/a	1. n/a 2. n/a
PM ₁₀	1. n/a 2. n/a	1. n/a 2. n/a
NPOC	1. n/d 2. Vapor recovery system w/an overall system efficiency $\geq 98\%^{a,T}$	1. n/d 2. Carbon Adsorber; or Refrigerated Condenser; or BAAQMD approved equivalent ^{a,T}

References

T. TBACT	a. BAAQMD T. TBACT	
----------	-----------------------	--

Section I: AQMD BACT Determinations Application No.: 353730 Equipment Category – Storage Tank - Fixed Roof

1.	GENERAL INFORMATION		DATE: 10/1/99	
Α.	MANUFACTURER:			
В.	TYPE: Storage Tank	C. MODEL:		
D.	STYLE:			
E.	APPLICABLE AQMD REGULATION XI RULES: Rule 4	-63		
F.	COST: \$ () SOURC	E OF COST DATA:		
G.	OPERATING SCHEDULE: 4 HRS/DA	.y 1 d	ays/wk 19 wks/yr	
•		_		
2.	EQUIPMENT INFORMATION		APP. NO.: 353730	
Α.	FUNCTION: To store organic liquids price	or to distribution t	o customers.	
В.	SIZE/DIMENSION/CAPACITY:			
	The applicant recently obtained perm size and/or capacity of the storage tar		0 1 0	
	A/Ns 353730-2, 353736, 353738, and	-		
	30,000 gallons capacity			
	A/Ns 353741-4, 353746-7, 353749, 353751-2: each storage tank = 10'-2" Dia. x 20'-0" H.,			
	12,000 gallons capacity			
	A/Ns 353753-5: each storage tank =	3,000 gallons cap	pacity	
C.	BLOWERS:	D. TOTAL F	LOW RATE: scfm	
E.	MATERIAL STORED/PROCESSED/HANDLED: Variou and styrene)	is commonly used	d organic liquids (e.g., mineral spirits	
F.	THROUGHPUT/PROCESS RATE/USAGE RATE:			
	Maximum volume filled into all the s	storage tanks at th	e facility shall not exceed 6 327 000	
	gallons of volatile organic liquids in	-		
3.	COMPANY INFORMATION		APP. NO.: 353730	
Α.	NAME: Van Waters & Rogers			
В.	ADDRESS: 2600 S. Garfield Avenue			
_	CITY: Commerce	STATE: (CA ^{ZIP:} 90040	
C.	CONTACT PERSON: Nick Gardner		D. PHONE NO.: (323)881-7158	
4.	PERMIT INFORMATION		APP. NO.: 353730	
А.	AGENCY: SCAQMD		1 000.000	
В.	AGENCY CONTACT PERSON: Belinda C. Wan		C. PHONE NO.: (909)396-2532	
D.	PERMIT TO CONSTRUCT INFORMATION:	P/C NO.: 353730		

4.	PERMIT INFORMATION		APP. NO.: 353730
E.	START-UP DATE: 1/31/00		
F.	PERMIT TO OPERATE INFORMATION:	P/O NO.:	ISSUANCE DATE:
_		_	
5.	EMISSION INFORMATION		APP. NO.: 353730
Α.	PERMIT		
A1.	PERMIT LIMIT:		
	greater than 150 degrees Centigrad Fahrenheit are not counted towards (2) The vapor pressure of the organ that of hexane, except for exempt of	in any one year. Ma e, or vapor pressure the 6,327,000 gallo nic liquids stored in compounds as define	aterials with an initial boiling point less than 0.10 psia at 70 degrees ons/year facility throughput limit. storage tanks 1-15 shall not exceed ed in Rule 102.
	(3) The vapor pressure of the organ	1	
	exceed that of methanol, except for	1 1	
	(4) The maximum VOC emissions(5) No correinogenia materials as id	•	•
	(5) No carcinogenic materials as id 1999) shall be stored in the tanks.	entified in AQMD i	cule 1401 (as amended March 12,
A2.	BACT/LAER DETERMINATION: Afterburner		
В.	CONTROL TECHNOLOGY		
B1.	MANUFACTURER/SUPPLIER: John Zink		
B2.	TYPE: Thermal Oxidizer - Direct Flat	ame	
B3.	Thermal Oxidizer, John Zink, Mod Gas Fired, 3.6 MMBtu/hr, With Tw Burner for the Blower-Assisted So	vo Burners, One Bur	(10, 3'-8" Dia. x 14'-0" H., Natural rner for the Passive Sources and one
B4.	CONTROL EQUIPMENT PERMIT APPLICATION DATA:	P/C NO.: 353767 P/O NO.:	ISSUANCE DATE: 9/9/1999 ISSUANCE DATE:
B5.	WASTE AIR FLOW TO CONTROL EQUIPMENT:		FLOW RATE:
	ACTUAL CONTAMINANT LOADING:		BLOWER HP: 20 HP
B6.	WARRANTY:		
B7.	PRIMARY POLLUTANTS: VOC		
B8.	SECONDARY POLLUTANTS: Combustion co	ontaminants	
B9.	SPACE REQUIREMENT:		
B10.	LIMITATIONS:		
B11.	FACILITY:		
			PHONE NO.:
	AGENCY: ADDRESS:		
	CONTACT PERSON:		PHONE NO.:

5.	EMISSION INFORMATION		APP. NO.: 353730
B12.	OPERATING HISTORY:		
B13.	SOURCE TEST/PERFORMANCE DATA ANALYSIS:		
	DATE OF SOURCE TEST:	CAPTURE EF	FICIENCY:
	DESTRUCTION EFFICIENCY:	OVERALL EF	FICEINCY:
	PERFORMANCE DATA:		
B14.	SOURCE TEST CONDITIONS/PERFORMANCE DATA:		
C.	COST		
C1.	CONTROL EQUIPMENT COST:	STALLATION COST IS INCLUD	ED IN CAPITAL COST
	CAPITAL: \$ INSTALLATION: \$	() ^s	OURCE OF COST DATA:
C2.	ANNUAL OPERATIONAL/MAINTENANCE COST: \$	() s	OURCE OF COST DATA:
D.	DEMONSTRATION OF COMPLIANCE		
D1.	STAFF PERMFORMING FIELD EVALUATION:		
	ENGINEER'S NAME:	INSPECTOR'S NAME:	DATE:
D2.	COMPLIANCE DEMONSTRATION:		
D3.	VARIANCE: NO. OF VARIANCES:	DATES:	
	CAUSES:		
D4.	VIOLATION: NO. OF VIOLATIONS:	DATES:	
	CAUSES:		
D5.	FREQUENCY OF MAINTENANCE:		

6. COMMENTS

APP. NO.: 353730

The applicant is planning to install 18 organic liquid storage tanks at this facility. All 18 organic liquid storage tanks will be vented to the thermal oxidizer included in application number 353767. The assumed overall efficiency of the thermal oxidizer is 95% VOC control. A temperature of not less than 1400 degrees Fahrenheit will be maintained in the thermal oxidizer when the equipment it serves is in operation, and no liquid wastes will be burned in the thermal oxidizer.

About Our Work Resources Business Assistance Rulemaking News

BACT Determination Detail

Category

Source Category:

Storage Tanks: External Floating Roof

SIC Code

2911

NAICS Code

Emission Unit Information

Manufacturer:	
Туре:	
Model:	
Equipment Description:	recovered oil storage tank, external floating roof with dome
Capacity / Dimentions	101,000 barrels
Fuel Type	None-applicable
Multiple Fuel Types	

Operating Schedule	
(hours/day)/(days/week)/	
(weeks/year)e	

Variable (/ /)

Function of Equipment

organic liquid storage

Project / Permit Information

Application/Permit No.:	22722
Application Completeness Date:	
New Construction/Modification:	New Construction
ATC Date:	08/24/2011
PTO Date:	
Startup Date:	
Technology Status:	BACT Determination
Source Test Available:	No
Source Test Results:	

Facility / District Information

Facility Name:

chevron products co

Facility Zip Code:

94802

https://ww3.arb.ca.gov/bact/bactnew/determination.php?var=986

Facility County:	Contra Costa
District Name:	Bay Area AQMD
District Contact:	greg solomon
Contact Phone No .:	415 749 4715

Notes

gsolomon@baaqmd.gov

Notes:

Contact E-Mail:

This BACT determination is achieved in practice since the south coast has a rule 1178, which requires domes on external floating roof tanks storing materials with greater than or equal to 3.0 psia and greater than 19,815 gallons.

Report Error In Determination

CONTACT US

(800) 242-4450 | helpline@arb.ca.gov 1001 | Street, Sacramento, CA 95814 P.O. Box 2815, Sacramento, CA 95812

California Governor Gavin Newsom Visit Governor's Website

Secretary for Environmental Protection Jared Blumenfeld Visit his Website

Chair, California Air Resources Board Mary D. Nichols Visit her Website

ACCESSIBILITY PRIVACY POLICY CONDITIONS OF USE LOCAL AIR DISTRICTS REGISTER TO VOTE

BAY AREA AIR QUALITY MANAGEMENT DISTRICT Best Available Control Technology (BACT) Guideline

Source Category

Source	ource: Storage Tank - Internal Floating Roof, Organic Liquids		2
Source:	Storage Tank - Internat Floating Kooj, Organic Liquias	Document #:	167.4.1
Class:	All	Date:	03/03/95

Determination

POLLUTANT	BACT 1. Technologically Feasible/ Cost Effective 2. Achieved in Practice	TYPICAL TECHNOLOGY
POC	1. Vapor recovery system w/ an overall system efficiency $\geq 98\%^{a,T}$ 2. BAAQMD Approved roof w/ liquid mounted primary seal and zero gap secondary seal, all meeting design criteria of Reg. 8, Rule 5. Also, no ungasketed roof penetrations, no slotted pipe guide pole unless equipped with float and wiper seals, and no adjustable roof legs unless fitted w/ vapor seal boots or equivalent ^{a,T}	 Thermal Incinerator; or Carbon Adsorber; or Refrigerated Condenser; or BAAQMD approved equivalent^{a,T} BAAQMD Approved Roof and Seal Design^{a,T}
NOx	1. n/a 2. n/a	1. n/a 2. n/a
SO ₂	1. n/a 2. n/a	1. n/a 2. n/a
СО	1. n/a 2. n/a	1. n/a 2. n/a
PM ₁₀	1. n/a 2. n/a	1. n/a 2. n/a
NPOC	 Vapor recovery system w/ an overall system efficiency ≥98%^{a,T} Same as for POC above 	 Carbon Adsorber; or Refrigerated Condenser; or BAAQMD approved equivalent^{a,T} BAAQMD Approved Roof and Seal Design^{a,T}

References

a. BAAQMD T. TBACT

Part B, Section 1 - SCAQMD BACT Determination

Source Type:

Application No.:

Equipment Category:

Major/LAER 535483, 535485, 544857 & 544859 Storage Tank

Equipment Subcategory:

External F	loating	Roof
------------	---------	------

Date:			February 1, 201	9	
1.	EQUIPMENT INFORM	MATION			
A.	MANUFACTURER: Custom	1	B. MODEL:	Custom	
C.	C. DESCRIPTION: Domed external floating roof, welded shell, Nos. 15, 2625, 2640 & 2643				
D.	D. FUNCTION: Phillips 66 Company is a refinery which owns and operates external floating				
	roof storage tanks for crude	e oil, gas oil, n	nixed naphtha and wast	ewater storage.	
E.	SIZE/DIMENSIONS/CAPACIT	Y:			
A/	N 535483: 117' Dia. x 40' H	H., 79,000 BB	L (3,318,000 Gal.) Mix	ed Naphtha	
A/	'N 535485: 165' Dia. x 48' H	H., 165,252 BI	BL (6,940,584 Gal.) Ga	s Oil	
A/	'N 544857: 260' Dia. x 65' H	H., 615,000 BI	BL (25,830,000 Gal.) C	rude Oil	
A/	'N 544859: 44' Dia. x 51' H	., 14,000 BBL	(588,000 Gal.) Wastev	vater	
со	MBUSTION SOURCES				
F.	MAXIMUM HEAT INPUT: N	/A			
G.	BURNER INFORMATION				
	TYPE	INDIV	IDUAL HEAT INPUT	NUMBER	
	N/A			Number of burners	
H.	PRIMARY FUEL: N/A		I. OTHER FUEL: N/A		
J.	J. OPERATING SCHEDULE: Hours 24 Days 7 Weeks 52				
K.	. EQUIPMENT COST:				
L. EQUIPMENT INFORMATION COMMENTS: Storage tanks are equipped with geodesic dome cover, dou deck floating roof, category A metallic shoe primary seal, category A rim-mounted secondary seal and guid pole gasketed sliding cover with wiper unslotted.					
2.	COMPANY INFORMA	ATION			

А.	. COMPANY: Phillips 66 Company		B. FAC ID: 171109	
C.	C. ADDRESS: 1520 E. Sepulveda Blvd. CITY: Carson STATE: CA ZIP: 90745			D. NAICS CODE: 324110
E.	E. CONTACT PERSON: Marshall Waller			F. TITLE: Env. Engineer
G.	PHONE NO.: (310) 522-8039	H. EM	IAIL:	

3.	PERMIT INFORMATION					
A.	AGENCY: SCAQMD	B. APPLICATION TYPE: NEW CONSTRUCTION				
C.	2. SCAQMD ENGINEER: Thomas Truppi					
D.	PERMIT INFORMATION: PC ISSUANCE DATE	: 8/30/13				
	P/O NO.: G17750, G1	7751, G51127 & G51128 PO ISSUANCE DATE: 3/15/2018				
E.	E. START-UP DATE: 4/4/2016					
F.	. OPERATIONAL TIME: 2+ years					

4. EMISSION INFORMATION

A. BACT EMISSION LIMITS AND AVERAGING TIMES:							
	VOC	NOX	SOX	СО	PM or PM ₁₀	INORGANIC	
BACT Limit							
Averaging Time							
Correction	Correction Correction						
B. OTHER BACT REQUIREMENTS:							
C. BASIS OF THE BACT/LAER DETERMINATION: Achieved in Practice/New Technology							
D. EMISSION INFORMATION COMMENTS:							

5. CONTRO	DL TECHNOLOGY				
A. MANUFACT	URER: Custom	B. MOI	DEL: Custom		
C. DESCRIPTIO	DESCRIPTION: Use of Geodesic Dome Cover, Floating Roof Pontoon (Double Deck),				
•	.	· · ·	with Category A wiper type,		
*	ole with gasketed sliding co	over with wiper unslotted	d.		
D. SIZE/DIMEN	SIONS/CAPACITY: N/A				
E. CONTROL EQ	UIPMENT PERMIT INFORM	ATION:			
APPLICATIO	N NO. same PC ISSUANCE D	ATE: same			
PO NO.:same	PO ISSUANCE DA	ATE: same			
F. REQUIRED C	ONTROL EFFICIENCIES: .				
CONTAMINANT	OVERALL CONTROL EFFICIENCY	CONTROL DEVICE EFFICIENCY	COLLECTION EFFICIENCY		
VOC	%	%	%		
NOx	%	%	%		
SOx	%	%	%		
СО	%	%	%		
РМ	%	%	%		
PM ₁₀	%	%	%		
INORGANIC	%	%	%		
G. CONTROL TECHNOLOGY COMMENTS					

6. DEMONSTRATION OF COMPLIANCE

- A. COMPLIANCE DEMONSTRATED BY: Maintenance, Inspection and Recordkeeping
- **B. DATE(S) OF SOURCE TEST:** An appropriate size parameter such as rated product throughput, usable volume, and/or one more characteristic dimensions.
- C. COLLECTION EFFICIENCY METHOD: N/A

D. COLLECTION EFFICIENCY PARAMETERS: N/A

E. SOURCE TEST/PERFORMANCE DATA:N/A

F. TEST OPERATING PARAMETERS AND CONDITIONS: N/A

G. TEST METHODS (SPECIFY AGENCY): N/A

H. MONITORING AND TESTING REQUIREMENTS: Monitoring monthly throughput permitted limit. This requirement is included for information only; it is not related to the dome cover BACT requirement.

I. DEMONSTRATION OF COMPLIANCE COMMENTS: Enter comments for additional information for Demonstration of Compliance.

7.	ADDITIONAL SCAQMD REFERENCE DATA					
A.	BCAT: 248919	B. CCAT: Click her text.	re to enter	C. APPLICATIO	ON TYPE CODE: 60	
D.	RECLAIM FAC? YES 🛛 NO 🗆				ST ID(S): N/A	
G.	G. SCAQMD SOURCE SPECIFIC RULES: Click here to enter text.					
Н.	HEALTH RISK FOR	R PERMIT UNIT				
H1.	MICR: Click here to enter text.	H2. MICR DATE: Click here to enter a date.		ER BURDEN: here to enter text.	H4. CB DATE: Click here to enter a date.	
H5	: HIA: Click here to enter text.	H6. HIA DATE: Click here to enter a date.	H7. HIC: C	Click here to enter	H8. HIC DATE: Click here to enter a date.	

TCEQ Table 7(d) - Internal Floating Roof Storage Tank Summary

Applicant's Full Name	Applicant's Full Name			
TPC Group LLC				
I. Tank Identification (Use	a separate form	for each tank)		
Location (indicate on plot plan a	and provide coor	dinates)		
Tank No.:Tank2D6				
Emission Point No. (EPN) (from	n flow diagram):	TK-2D6		
Facility Identification Number (F	FIN):	TK-2D6		
Control Identification Number (CIN):			
Status of the tank				
🛛 New Tank	Altered Tank		Relocation	Change of Service
Previous Permit No.:				
Previous Permit by Rule No.:				
Previous Exemption No.:				
II. Tank Physical Character	ristics			
Dimensions of the Tank				
Shell Height (<i>ft.</i>):				
Diameter (ft.):	75			
Normal Capacity or Tank Volum	ne (gallons):	130,183,200		
Turnovers per year:				
Net Throughput (gallons/year):				
Maximum Pumping Rate (gallons/hour ¹): 22,000				
Self-Supporting Roof: X YES IN		10		
Numbers of Columns:				
Column Diameter (ft.):				

¹ Use the higher of the maximum fill rate or maximum withdrawal rate.

II. Tank Physical Characteristics (continued)						
Shell /Roof and Paint	Characteristics					
Shell Condition						
⊠ Light Rust	Dense Rust	Gunite Lining				
Shell Color/Shade						
White/White	🛛 Aluminum/Specular	Aluminum/Diffuse				
Gray/Light	Gray/Medium	Red/Primer				
Other (Describe):						
Shell Condition						
🖾 Good	Poor					
Roof Color/Shade						
White/White	Aluminum/Specular	Aluminum/Diffuse				
Gray/Light	Gray/Medium	Red/Primer				
Other (Describe):						
Roof Condition						
🖾 Good	Poor					
Rim-Seal System						
Primary Seal						
Vapor-mounted	Liquid-mounted	Mechanical Shoe				
Secondary Seal:	🖂 YES 🗌 NO					
Deck Characteristic						
Deck Type						
□ Bolted ⊠ Welded						
Deck Construction (Bolted Tanks Only)						
Continuous Sheet	Construction 5 ft. wide					
Continuous Sheet	Construction 6 ft. wide					
Continuous Sheet	Construction 7 ft. wide					
Rectangular Panel	Construction 5 X 7.5 ft. wide					
Rectangular Panel Construction 5 X 12 ft. wide						

II. Tank Physical Characte	I. Tank Physical Characteristics (continued)			
Deck Seam Length (Bolted Ta	nks Only) (ft.)			
Roof Fitting Loss Factor (Ib-mo	ole/year)			
Based Upon				
Typical Fittings		Controlled Fittings	Actual Fittings	
Complete Section IV, Fittings I	Information, to r	ecord fittings count used	to calculate the roof fitting loss factor.	
III. Liquid Properties of Sto	ored Material			
Chemical Category				
🛛 Organic Liquids		Petroleum Distillates	Crude Oils	
Single (complete Section III.1.	or Multi-Compo	onent Liquid <i>(complete</i> Se	ection III.2.)	
🖂 Single		Multiple		
1. Single Component	Information			
Chemical Name: Iso-octene	e			
Chemical Abstract Service (CA	AS) No.			
Average Liquid Surface Tempe	erature (<i>°F</i>):			
True Vapor Pressure at Average	ge Liquid Surfac	ce Temperature (<i>psia</i>):		
Liquid Molecular Weight:				
2. Multiple Componen	nt Information			
Mixture Name:				
Average Liquid Surface Tempe	erature (<i>°F</i>):			
Minimum Liquid Surface Temp	perature (<i>°F</i>):			
Maximum Liquid Surface Temperature (°F):				
True Vapor Pressure at Avera	ge Liquid Surfac	ce Temperature (<i>psia</i>):		
True Vapor Pressure at Minim	um Liquid Surfa	ce Temperature (<i>psia</i>):		
True Vapor Pressure at Maxim	num Liquid Surfa	ace Temperature (psia):		
Liquid Molecular Weight:				
Vapor Molecular Weight:				

III. Liquid Properties of Stored Material					
Chemical Components Information (Below)					
Chemical Name	CAS Number	Percent of Total Liquid Weight <i>(typical)</i>	Percent of Total Vapor Weight <i>(typical)</i>	Molecular Weight	

Fitting Type ⁽¹⁾ Fitting Status Quantity Deck Fitting Qu					
Fitting Type ⁽)		Quantity	Loss Factor K _F ⁽²⁾	Quantity x K _F	
Access Hatch	Bolted Cover, Gasketed	1	19.2		
Access Hatch	Unbolted Cover, Ungasketed				
Access Hatch	Unbolted Cover, Gasketed				
Column Well	Round Pipe - Sliding Cover, Ungasketed				
Column Well	Round Pipe - Sliding Cover, Gasketed				
Column Well	Round Pipe - Flex. Fabric Sleeve Seal				
Column Well	Built-Up Col Sliding Cover, Ungask.				
Column Well	Built-Up Col Sliding Cover, Gasketed				
Unslotted Guidepole and Well	Sliding Cover, Ungasketed				
Unslotted Guidepole and Well	Sliding Cover, Ungasketed w/Pole Sleeve				
Unslotted Guidepole and Well	Sliding Cover, Gasketed				
Unslotted Guidepole and Well	Sliding Cover, Gasketed w/Pole Wiper				
Unslotted Guidepole and Well	Sliding Cover, Gasketed w/Pole Sleeve				
Slotted Guidepole/Sample Well	Ungasketed or Gasketed Sliding Cover	1	516		
Slotted Guidepole/Sample Well	Ungask. or Gask. Sliding Cover w/Float				
Slotted Guidepole/Sample Well	Gasketed Sliding Cover, w/Pole Wiper				
Slotted Guidepole/Sample Well	Gasketed Sliding Cover, w/Pole Sleeve				
Slotted Guidepole/Sample Well	Gasketed Sliding Cover, w/Pole Wiper and Sleeve				
Slotted Guidepole/Sample Well	Gasketed Sliding Cover, w/Float and Pole Wiper				
Slotted Guidepole/Sample Well	Gasketed Sliding Cover, w/Float, Pole Wiper, and Pole Sleeve				
Slotted Guidepole/Sample Well	Flexible Enclosure				

Note (1): Document any fittings not listed above in blank rows and include in total loss factor. Note (2): Refer to current EPA AP-42 Chapter 7 for deck fitting loss factors (K_F).

IV. Fitting Information (continued)					
Fitting Type ⁽¹⁾	Fitting Status	Quantity	Deck Fitting Loss Factor K _F ⁽²⁾	Quantity x K _F	
Automatic Gauge Float Well	Unbolted Cover, Ungasketed	1	168		
Automatic Gauge Float Well	Unbolted Cover, Gasketed				
Automatic Gauge Float Well	Bolted Cover, Gasketed				
Gauge Hatch/Sample Port	Gasketed, Weighted Mech. Actuation				
Gauge Hatch/Sample Port	Ungasketed, Weighted Mech. Actuation				
Gauge Hatch/Sample Port	Slit Fabric Seal, 10% Open Area	1	144		
Vacuum Breaker	Ungasketed, Weighted Mech. Actuation				
Vacuum Breaker	Gasketed, Weighted Mech. Actuation	1	74.4		
Deck Drain	Open				
Deck Drain	90% Closed				
Deck Drain	Stub Drain (1-inch Diameter)				
Deck Leg – Pontoon Area of Pontoon Roof	Ungasketed	16	32		
Deck Leg – Pontoon Area of Pontoon Roof	Gasketed				
Deck Leg – Pontoon Area of Pontoon Roof	Sock				
Deck Leg – Double Deck Roof and Center Area of Pontoon	Ungasketed	10	9.84		
Deck Leg – Double Deck Roof and Center Area of Pontoon	Gasketed				
Deck Leg – Double Deck Roof and Center Area of Pontoon	Sock				
Deck Leg or Hanger (no opening)	Fixed				
Rim Vent	Ungasketed, Weighted Mech. Actuation				
Rim Vent	Gasketed, Weighted Mech. Actuation				

Note (1): Document any fittings not listed above in blank rows and include in total loss factor. Note (2): Refer to current EPA AP-42 Chapter 7 for deck fitting loss factors (K_F).

IV. Fitting Information (continued)				
Fitting Type ⁽¹⁾	Fitting Status	Quantity	Deck Fitting Loss Factor K _F ⁽²⁾	Quantity x K _F
Ladder Well	Sliding Cover, Ungasketed			
Ladder Well	Sliding Cover, Gasketed			
Ladder-Guidepole Combo Well	Sliding Cover, Ungasketed			
Ladder-Guidepole Combo Well	Ladder Sleeve, Ungasketed Sliding Cover			
Ladder-Guidepole Combo Well	Ladder Sleeve, Gasketed Sliding Cover			
	Total deck fitting lo	ss factor, lb	-mole/year	783.47

Note (1): Document any fittings not listed above in blank rows and include in total loss factor. Note (2): Refer to current EPA AP-42 Chapter 7 for deck fitting loss factors (K_F).